Properties

Label 7920.1943
Modulus $7920$
Conductor $1320$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7920, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,10,15,14]))
 
pari: [g,chi] = znchar(Mod(1943,7920))
 

Basic properties

Modulus: \(7920\)
Conductor: \(1320\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1320}(1283,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7920.id

\(\chi_{7920}(503,\cdot)\) \(\chi_{7920}(1223,\cdot)\) \(\chi_{7920}(1943,\cdot)\) \(\chi_{7920}(2087,\cdot)\) \(\chi_{7920}(2807,\cdot)\) \(\chi_{7920}(3383,\cdot)\) \(\chi_{7920}(3527,\cdot)\) \(\chi_{7920}(4967,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.10757982042338190187612372992000000000000000.1

Values on generators

\((991,5941,3521,6337,6481)\) → \((-1,-1,-1,-i,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7920 }(1943, a) \) \(1\)\(1\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(i\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7920 }(1943,a) \;\) at \(\;a = \) e.g. 2