sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7920, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,3,10,3,6]))
pari:[g,chi] = znchar(Mod(2507,7920))
Modulus: | 7920 | |
Conductor: | 7920 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 12 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ7920(2243,⋅)
χ7920(2507,⋅)
χ7920(4883,⋅)
χ7920(7787,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(991,5941,3521,6337,6481) → (−1,i,e(65),i,−1)
a |
−1 | 1 | 7 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ7920(2507,a) |
1 | 1 | e(121) | e(32) | i | i | e(1211) | e(127) | e(61) | −1 | e(61) | e(31) |
sage:chi.jacobi_sum(n)