Properties

Label 7920.2507
Modulus $7920$
Conductor $7920$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7920, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,3,10,3,6]))
 
pari: [g,chi] = znchar(Mod(2507,7920))
 

Basic properties

Modulus: \(7920\)
Conductor: \(7920\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7920.gb

\(\chi_{7920}(2243,\cdot)\) \(\chi_{7920}(2507,\cdot)\) \(\chi_{7920}(4883,\cdot)\) \(\chi_{7920}(7787,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((991,5941,3521,6337,6481)\) → \((-1,i,e\left(\frac{5}{6}\right),i,-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7920 }(2507, a) \) \(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(i\)\(i\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7920 }(2507,a) \;\) at \(\;a = \) e.g. 2