Properties

Label 7920.2713
Modulus $7920$
Conductor $3960$
Order $60$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7920, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,30,20,45,42]))
 
pari: [g,chi] = znchar(Mod(2713,7920))
 

Basic properties

Modulus: \(7920\)
Conductor: \(3960\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3960}(733,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7920.lm

\(\chi_{7920}(457,\cdot)\) \(\chi_{7920}(1273,\cdot)\) \(\chi_{7920}(1993,\cdot)\) \(\chi_{7920}(2713,\cdot)\) \(\chi_{7920}(2857,\cdot)\) \(\chi_{7920}(3577,\cdot)\) \(\chi_{7920}(3913,\cdot)\) \(\chi_{7920}(4153,\cdot)\) \(\chi_{7920}(4297,\cdot)\) \(\chi_{7920}(4633,\cdot)\) \(\chi_{7920}(5353,\cdot)\) \(\chi_{7920}(5497,\cdot)\) \(\chi_{7920}(5737,\cdot)\) \(\chi_{7920}(6217,\cdot)\) \(\chi_{7920}(6793,\cdot)\) \(\chi_{7920}(6937,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((991,5941,3521,6337,6481)\) → \((1,-1,e\left(\frac{1}{3}\right),-i,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 7920 }(2713, a) \) \(1\)\(1\)\(e\left(\frac{59}{60}\right)\)\(e\left(\frac{7}{60}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{7}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7920 }(2713,a) \;\) at \(\;a = \) e.g. 2