Properties

Label 80.61
Modulus 8080
Conductor 1616
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,0]))
 
pari: [g,chi] = znchar(Mod(61,80))
 

Basic properties

Modulus: 8080
Conductor: 1616
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ16(13,)\chi_{16}(13,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 80.l

χ80(21,)\chi_{80}(21,\cdot) χ80(61,)\chi_{80}(61,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: Q(ζ16)+\Q(\zeta_{16})^+

Values on generators

(31,21,17)(31,21,17)(1,i,1)(1,-i,1)

First values

aa 1-1113377991111131317171919212123232727
χ80(61,a) \chi_{ 80 }(61, a) 1111ii1-11-1i-iii11iii-i1-1i-i
sage: chi.jacobi_sum(n)
 
χ80(61,a)   \chi_{ 80 }(61,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ80(61,))   \tau_{ a }( \chi_{ 80 }(61,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ80(61,),χ80(n,))   J(\chi_{ 80 }(61,·),\chi_{ 80 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ80(61,))  K(a,b,\chi_{ 80 }(61,·)) \; at   a,b=\; a,b = e.g. 1,2