sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(800, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,5,26]))
pari:[g,chi] = znchar(Mod(667,800))
Modulus: | 800 | |
Conductor: | 800 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 40 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ800(3,⋅)
χ800(27,⋅)
χ800(83,⋅)
χ800(163,⋅)
χ800(187,⋅)
χ800(267,⋅)
χ800(323,⋅)
χ800(347,⋅)
χ800(403,⋅)
χ800(427,⋅)
χ800(483,⋅)
χ800(563,⋅)
χ800(587,⋅)
χ800(667,⋅)
χ800(723,⋅)
χ800(747,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(351,101,577) → (−1,e(81),e(2013))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ800(667,a) |
1 | 1 | e(4017) | 1 | e(2017) | e(4021) | e(409) | e(2019) | e(403) | e(4017) | e(52) | e(4011) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)