Properties

Label 800.779
Modulus 800800
Conductor 800800
Order 4040
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,25,4]))
 
pari: [g,chi] = znchar(Mod(779,800))
 

Basic properties

Modulus: 800800
Conductor: 800800
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4040
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 800.bz

χ800(19,)\chi_{800}(19,\cdot) χ800(59,)\chi_{800}(59,\cdot) χ800(139,)\chi_{800}(139,\cdot) χ800(179,)\chi_{800}(179,\cdot) χ800(219,)\chi_{800}(219,\cdot) χ800(259,)\chi_{800}(259,\cdot) χ800(339,)\chi_{800}(339,\cdot) χ800(379,)\chi_{800}(379,\cdot) χ800(419,)\chi_{800}(419,\cdot) χ800(459,)\chi_{800}(459,\cdot) χ800(539,)\chi_{800}(539,\cdot) χ800(579,)\chi_{800}(579,\cdot) χ800(619,)\chi_{800}(619,\cdot) χ800(659,)\chi_{800}(659,\cdot) χ800(739,)\chi_{800}(739,\cdot) χ800(779,)\chi_{800}(779,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ40)\Q(\zeta_{40})
Fixed field: 40.0.15474250491067253436239052800000000000000000000000000000000000000000000000000000000000000000000.1

Values on generators

(351,101,577)(351,101,577)(1,e(58),e(110))(-1,e\left(\frac{5}{8}\right),e\left(\frac{1}{10}\right))

First values

aa 1-1113377991111131317171919212123232727
χ800(779,a) \chi_{ 800 }(779, a) 1-111e(340)e\left(\frac{3}{40}\right)iie(320)e\left(\frac{3}{20}\right)e(940)e\left(\frac{9}{40}\right)e(1140)e\left(\frac{11}{40}\right)e(45)e\left(\frac{4}{5}\right)e(2740)e\left(\frac{27}{40}\right)e(1340)e\left(\frac{13}{40}\right)e(720)e\left(\frac{7}{20}\right)e(940)e\left(\frac{9}{40}\right)
sage: chi.jacobi_sum(n)
 
χ800(779,a)   \chi_{ 800 }(779,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ800(779,))   \tau_{ a }( \chi_{ 800 }(779,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ800(779,),χ800(n,))   J(\chi_{ 800 }(779,·),\chi_{ 800 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ800(779,))  K(a,b,\chi_{ 800 }(779,·)) \; at   a,b=\; a,b = e.g. 1,2