sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(801, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([11,3]))
pari:[g,chi] = znchar(Mod(704,801))
Modulus: | 801 | |
Conductor: | 801 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 66 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ801(11,⋅)
χ801(50,⋅)
χ801(146,⋅)
χ801(176,⋅)
χ801(200,⋅)
χ801(203,⋅)
χ801(263,⋅)
χ801(311,⋅)
χ801(317,⋅)
χ801(437,⋅)
χ801(443,⋅)
χ801(470,⋅)
χ801(518,⋅)
χ801(545,⋅)
χ801(578,⋅)
χ801(680,⋅)
χ801(704,⋅)
χ801(734,⋅)
χ801(785,⋅)
χ801(797,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(713,181) → (e(61),e(221))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ801(704,a) |
−1 | 1 | e(6659) | e(3326) | e(661) | e(6623) | e(2215) | e(1110) | e(6665) | e(6625) | e(338) | e(3319) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)