Properties

Label 8043.340
Modulus 80438043
Conductor 26812681
Order 11461146
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,764,129]))
 
pari: [g,chi] = znchar(Mod(340,8043))
 

Basic properties

Modulus: 80438043
Conductor: 26812681
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 11461146
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2681(340,)\chi_{2681}(340,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8043.bd

χ8043(37,)\chi_{8043}(37,\cdot) χ8043(79,)\chi_{8043}(79,\cdot) χ8043(88,)\chi_{8043}(88,\cdot) χ8043(109,)\chi_{8043}(109,\cdot) χ8043(151,)\chi_{8043}(151,\cdot) χ8043(163,)\chi_{8043}(163,\cdot) χ8043(214,)\chi_{8043}(214,\cdot) χ8043(247,)\chi_{8043}(247,\cdot) χ8043(310,)\chi_{8043}(310,\cdot) χ8043(319,)\chi_{8043}(319,\cdot) χ8043(340,)\chi_{8043}(340,\cdot) χ8043(352,)\chi_{8043}(352,\cdot) χ8043(394,)\chi_{8043}(394,\cdot) χ8043(403,)\chi_{8043}(403,\cdot) χ8043(424,)\chi_{8043}(424,\cdot) χ8043(436,)\chi_{8043}(436,\cdot) χ8043(457,)\chi_{8043}(457,\cdot) χ8043(466,)\chi_{8043}(466,\cdot) χ8043(478,)\chi_{8043}(478,\cdot) χ8043(487,)\chi_{8043}(487,\cdot) χ8043(508,)\chi_{8043}(508,\cdot) χ8043(541,)\chi_{8043}(541,\cdot) χ8043(550,)\chi_{8043}(550,\cdot) χ8043(562,)\chi_{8043}(562,\cdot) χ8043(571,)\chi_{8043}(571,\cdot) χ8043(592,)\chi_{8043}(592,\cdot) χ8043(604,)\chi_{8043}(604,\cdot) χ8043(613,)\chi_{8043}(613,\cdot) χ8043(697,)\chi_{8043}(697,\cdot) χ8043(709,)\chi_{8043}(709,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ573)\Q(\zeta_{573})
Fixed field: Number field defined by a degree 1146 polynomial (not computed)

Values on generators

(5363,2299,6133)(5363,2299,6133)(1,e(23),e(43382))(1,e\left(\frac{2}{3}\right),e\left(\frac{43}{382}\right))

First values

aa 1-11122445588101011111313161617171919
χ8043(340,a) \chi_{ 8043 }(340, a) 1-111e(239573)e\left(\frac{239}{573}\right)e(478573)e\left(\frac{478}{573}\right)e(5111146)e\left(\frac{511}{1146}\right)e(48191)e\left(\frac{48}{191}\right)e(9891146)e\left(\frac{989}{1146}\right)e(4011146)e\left(\frac{401}{1146}\right)e(259382)e\left(\frac{259}{382}\right)e(383573)e\left(\frac{383}{573}\right)e(130573)e\left(\frac{130}{573}\right)e(554573)e\left(\frac{554}{573}\right)
sage: chi.jacobi_sum(n)
 
χ8043(340,a)   \chi_{ 8043 }(340,a) \; at   a=\;a = e.g. 2