from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
M = H._module
chi = DirichletCharacter(H, M([0,764,129]))
pari: [g,chi] = znchar(Mod(340,8043))
χ8043(37,⋅)
χ8043(79,⋅)
χ8043(88,⋅)
χ8043(109,⋅)
χ8043(151,⋅)
χ8043(163,⋅)
χ8043(214,⋅)
χ8043(247,⋅)
χ8043(310,⋅)
χ8043(319,⋅)
χ8043(340,⋅)
χ8043(352,⋅)
χ8043(394,⋅)
χ8043(403,⋅)
χ8043(424,⋅)
χ8043(436,⋅)
χ8043(457,⋅)
χ8043(466,⋅)
χ8043(478,⋅)
χ8043(487,⋅)
χ8043(508,⋅)
χ8043(541,⋅)
χ8043(550,⋅)
χ8043(562,⋅)
χ8043(571,⋅)
χ8043(592,⋅)
χ8043(604,⋅)
χ8043(613,⋅)
χ8043(697,⋅)
χ8043(709,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(5363,2299,6133) → (1,e(32),e(38243))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 19 |
χ8043(340,a) |
−1 | 1 | e(573239) | e(573478) | e(1146511) | e(19148) | e(1146989) | e(1146401) | e(382259) | e(573383) | e(573130) | e(573554) |