Properties

Label 8043.535
Modulus $8043$
Conductor $2681$
Order $1146$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,191,450]))
 
pari: [g,chi] = znchar(Mod(535,8043))
 

Basic properties

Modulus: \(8043\)
Conductor: \(2681\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1146\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2681}(535,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8043.be

\(\chi_{8043}(19,\cdot)\) \(\chi_{8043}(31,\cdot)\) \(\chi_{8043}(73,\cdot)\) \(\chi_{8043}(103,\cdot)\) \(\chi_{8043}(124,\cdot)\) \(\chi_{8043}(136,\cdot)\) \(\chi_{8043}(220,\cdot)\) \(\chi_{8043}(229,\cdot)\) \(\chi_{8043}(292,\cdot)\) \(\chi_{8043}(304,\cdot)\) \(\chi_{8043}(313,\cdot)\) \(\chi_{8043}(346,\cdot)\) \(\chi_{8043}(397,\cdot)\) \(\chi_{8043}(439,\cdot)\) \(\chi_{8043}(451,\cdot)\) \(\chi_{8043}(481,\cdot)\) \(\chi_{8043}(493,\cdot)\) \(\chi_{8043}(502,\cdot)\) \(\chi_{8043}(535,\cdot)\) \(\chi_{8043}(544,\cdot)\) \(\chi_{8043}(556,\cdot)\) \(\chi_{8043}(586,\cdot)\) \(\chi_{8043}(607,\cdot)\) \(\chi_{8043}(649,\cdot)\) \(\chi_{8043}(661,\cdot)\) \(\chi_{8043}(733,\cdot)\) \(\chi_{8043}(775,\cdot)\) \(\chi_{8043}(787,\cdot)\) \(\chi_{8043}(808,\cdot)\) \(\chi_{8043}(817,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{573})$
Fixed field: Number field defined by a degree 1146 polynomial (not computed)

Values on generators

\((5363,2299,6133)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{75}{191}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 8043 }(535, a) \) \(-1\)\(1\)\(e\left(\frac{545}{573}\right)\)\(e\left(\frac{517}{573}\right)\)\(e\left(\frac{259}{1146}\right)\)\(e\left(\frac{163}{191}\right)\)\(e\left(\frac{203}{1146}\right)\)\(e\left(\frac{82}{573}\right)\)\(e\left(\frac{215}{382}\right)\)\(e\left(\frac{461}{573}\right)\)\(e\left(\frac{485}{1146}\right)\)\(e\left(\frac{1009}{1146}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8043 }(535,a) \;\) at \(\;a = \) e.g. 2