Properties

Label 8043.59
Modulus $8043$
Conductor $8043$
Order $1146$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
 
M = H._module
 
chi = DirichletCharacter(H, M([573,191,435]))
 
pari: [g,chi] = znchar(Mod(59,8043))
 

Basic properties

Modulus: \(8043\)
Conductor: \(8043\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1146\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8043.ba

\(\chi_{8043}(5,\cdot)\) \(\chi_{8043}(26,\cdot)\) \(\chi_{8043}(47,\cdot)\) \(\chi_{8043}(59,\cdot)\) \(\chi_{8043}(80,\cdot)\) \(\chi_{8043}(89,\cdot)\) \(\chi_{8043}(122,\cdot)\) \(\chi_{8043}(131,\cdot)\) \(\chi_{8043}(164,\cdot)\) \(\chi_{8043}(194,\cdot)\) \(\chi_{8043}(215,\cdot)\) \(\chi_{8043}(236,\cdot)\) \(\chi_{8043}(257,\cdot)\) \(\chi_{8043}(269,\cdot)\) \(\chi_{8043}(290,\cdot)\) \(\chi_{8043}(299,\cdot)\) \(\chi_{8043}(311,\cdot)\) \(\chi_{8043}(320,\cdot)\) \(\chi_{8043}(332,\cdot)\) \(\chi_{8043}(341,\cdot)\) \(\chi_{8043}(362,\cdot)\) \(\chi_{8043}(374,\cdot)\) \(\chi_{8043}(416,\cdot)\) \(\chi_{8043}(488,\cdot)\) \(\chi_{8043}(500,\cdot)\) \(\chi_{8043}(542,\cdot)\) \(\chi_{8043}(563,\cdot)\) \(\chi_{8043}(593,\cdot)\) \(\chi_{8043}(605,\cdot)\) \(\chi_{8043}(614,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{573})$
Fixed field: Number field defined by a degree 1146 polynomial (not computed)

Values on generators

\((5363,2299,6133)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{145}{382}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 8043 }(59, a) \) \(-1\)\(1\)\(e\left(\frac{799}{1146}\right)\)\(e\left(\frac{226}{573}\right)\)\(e\left(\frac{817}{1146}\right)\)\(e\left(\frac{35}{382}\right)\)\(e\left(\frac{235}{573}\right)\)\(e\left(\frac{283}{573}\right)\)\(e\left(\frac{88}{191}\right)\)\(e\left(\frac{452}{573}\right)\)\(e\left(\frac{505}{573}\right)\)\(e\left(\frac{205}{1146}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8043 }(59,a) \;\) at \(\;a = \) e.g. 2