Properties

Label 8043.76
Modulus 80438043
Conductor 26812681
Order 382382
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8043, base_ring=CyclotomicField(382)) M = H._module chi = DirichletCharacter(H, M([0,191,16]))
 
Copy content pari:[g,chi] = znchar(Mod(76,8043))
 

Basic properties

Modulus: 80438043
Conductor: 26812681
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 382382
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2681(76,)\chi_{2681}(76,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8043.s

χ8043(34,)\chi_{8043}(34,\cdot) χ8043(55,)\chi_{8043}(55,\cdot) χ8043(76,)\chi_{8043}(76,\cdot) χ8043(139,)\chi_{8043}(139,\cdot) χ8043(202,)\chi_{8043}(202,\cdot) χ8043(223,)\chi_{8043}(223,\cdot) χ8043(265,)\chi_{8043}(265,\cdot) χ8043(286,)\chi_{8043}(286,\cdot) χ8043(370,)\chi_{8043}(370,\cdot) χ8043(391,)\chi_{8043}(391,\cdot) χ8043(412,)\chi_{8043}(412,\cdot) χ8043(433,)\chi_{8043}(433,\cdot) χ8043(454,)\chi_{8043}(454,\cdot) χ8043(475,)\chi_{8043}(475,\cdot) χ8043(496,)\chi_{8043}(496,\cdot) χ8043(517,)\chi_{8043}(517,\cdot) χ8043(643,)\chi_{8043}(643,\cdot) χ8043(706,)\chi_{8043}(706,\cdot) χ8043(727,)\chi_{8043}(727,\cdot) χ8043(769,)\chi_{8043}(769,\cdot) χ8043(790,)\chi_{8043}(790,\cdot) χ8043(853,)\chi_{8043}(853,\cdot) χ8043(874,)\chi_{8043}(874,\cdot) χ8043(895,)\chi_{8043}(895,\cdot) χ8043(916,)\chi_{8043}(916,\cdot) χ8043(937,)\chi_{8043}(937,\cdot) χ8043(958,)\chi_{8043}(958,\cdot) χ8043(979,)\chi_{8043}(979,\cdot) χ8043(1042,)\chi_{8043}(1042,\cdot) χ8043(1105,)\chi_{8043}(1105,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ191)\Q(\zeta_{191})
Fixed field: Number field defined by a degree 382 polynomial (not computed)

Values on generators

(5363,2299,6133)(5363,2299,6133)(1,1,e(8191))(1,-1,e\left(\frac{8}{191}\right))

First values

aa 1-11122445588101011111313161617171919
χ8043(76,a) \chi_{ 8043 }(76, a) 1-111e(117191)e\left(\frac{117}{191}\right)e(43191)e\left(\frac{43}{191}\right)e(207382)e\left(\frac{207}{382}\right)e(160191)e\left(\frac{160}{191}\right)e(59382)e\left(\frac{59}{382}\right)e(53191)e\left(\frac{53}{191}\right)e(163382)e\left(\frac{163}{382}\right)e(86191)e\left(\frac{86}{191}\right)e(13382)e\left(\frac{13}{382}\right)e(361382)e\left(\frac{361}{382}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ8043(76,a)   \chi_{ 8043 }(76,a) \; at   a=\;a = e.g. 2