sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8043, base_ring=CyclotomicField(382))
M = H._module
chi = DirichletCharacter(H, M([0,191,16]))
pari:[g,chi] = znchar(Mod(76,8043))
χ8043(34,⋅)
χ8043(55,⋅)
χ8043(76,⋅)
χ8043(139,⋅)
χ8043(202,⋅)
χ8043(223,⋅)
χ8043(265,⋅)
χ8043(286,⋅)
χ8043(370,⋅)
χ8043(391,⋅)
χ8043(412,⋅)
χ8043(433,⋅)
χ8043(454,⋅)
χ8043(475,⋅)
χ8043(496,⋅)
χ8043(517,⋅)
χ8043(643,⋅)
χ8043(706,⋅)
χ8043(727,⋅)
χ8043(769,⋅)
χ8043(790,⋅)
χ8043(853,⋅)
χ8043(874,⋅)
χ8043(895,⋅)
χ8043(916,⋅)
χ8043(937,⋅)
χ8043(958,⋅)
χ8043(979,⋅)
χ8043(1042,⋅)
χ8043(1105,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(5363,2299,6133) → (1,−1,e(1918))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 19 |
χ8043(76,a) |
−1 | 1 | e(191117) | e(19143) | e(382207) | e(191160) | e(38259) | e(19153) | e(382163) | e(19186) | e(38213) | e(382361) |
sage:chi.jacobi_sum(n)