Properties

Label 8048.27
Modulus $8048$
Conductor $8048$
Order $1004$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8048, base_ring=CyclotomicField(1004))
 
M = H._module
 
chi = DirichletCharacter(H, M([502,251,936]))
 
pari: [g,chi] = znchar(Mod(27,8048))
 

Basic properties

Modulus: \(8048\)
Conductor: \(8048\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1004\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8048.v

\(\chi_{8048}(3,\cdot)\) \(\chi_{8048}(11,\cdot)\) \(\chi_{8048}(27,\cdot)\) \(\chi_{8048}(43,\cdot)\) \(\chi_{8048}(59,\cdot)\) \(\chi_{8048}(67,\cdot)\) \(\chi_{8048}(75,\cdot)\) \(\chi_{8048}(83,\cdot)\) \(\chi_{8048}(91,\cdot)\) \(\chi_{8048}(99,\cdot)\) \(\chi_{8048}(131,\cdot)\) \(\chi_{8048}(147,\cdot)\) \(\chi_{8048}(155,\cdot)\) \(\chi_{8048}(219,\cdot)\) \(\chi_{8048}(243,\cdot)\) \(\chi_{8048}(275,\cdot)\) \(\chi_{8048}(283,\cdot)\) \(\chi_{8048}(291,\cdot)\) \(\chi_{8048}(299,\cdot)\) \(\chi_{8048}(323,\cdot)\) \(\chi_{8048}(339,\cdot)\) \(\chi_{8048}(355,\cdot)\) \(\chi_{8048}(363,\cdot)\) \(\chi_{8048}(379,\cdot)\) \(\chi_{8048}(387,\cdot)\) \(\chi_{8048}(427,\cdot)\) \(\chi_{8048}(435,\cdot)\) \(\chi_{8048}(443,\cdot)\) \(\chi_{8048}(483,\cdot)\) \(\chi_{8048}(507,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1004})$
Fixed field: Number field defined by a degree 1004 polynomial (not computed)

Values on generators

\((1007,6037,2017)\) → \((-1,i,e\left(\frac{234}{251}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 8048 }(27, a) \) \(-1\)\(1\)\(e\left(\frac{687}{1004}\right)\)\(e\left(\frac{183}{1004}\right)\)\(e\left(\frac{44}{251}\right)\)\(e\left(\frac{185}{502}\right)\)\(e\left(\frac{909}{1004}\right)\)\(e\left(\frac{353}{1004}\right)\)\(e\left(\frac{435}{502}\right)\)\(e\left(\frac{123}{251}\right)\)\(e\left(\frac{199}{1004}\right)\)\(e\left(\frac{863}{1004}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8048 }(27,a) \;\) at \(\;a = \) e.g. 2