Properties

Label 8048.27
Modulus 80488048
Conductor 80488048
Order 10041004
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8048, base_ring=CyclotomicField(1004))
 
M = H._module
 
chi = DirichletCharacter(H, M([502,251,936]))
 
pari: [g,chi] = znchar(Mod(27,8048))
 

Basic properties

Modulus: 80488048
Conductor: 80488048
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 10041004
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8048.v

χ8048(3,)\chi_{8048}(3,\cdot) χ8048(11,)\chi_{8048}(11,\cdot) χ8048(27,)\chi_{8048}(27,\cdot) χ8048(43,)\chi_{8048}(43,\cdot) χ8048(59,)\chi_{8048}(59,\cdot) χ8048(67,)\chi_{8048}(67,\cdot) χ8048(75,)\chi_{8048}(75,\cdot) χ8048(83,)\chi_{8048}(83,\cdot) χ8048(91,)\chi_{8048}(91,\cdot) χ8048(99,)\chi_{8048}(99,\cdot) χ8048(131,)\chi_{8048}(131,\cdot) χ8048(147,)\chi_{8048}(147,\cdot) χ8048(155,)\chi_{8048}(155,\cdot) χ8048(219,)\chi_{8048}(219,\cdot) χ8048(243,)\chi_{8048}(243,\cdot) χ8048(275,)\chi_{8048}(275,\cdot) χ8048(283,)\chi_{8048}(283,\cdot) χ8048(291,)\chi_{8048}(291,\cdot) χ8048(299,)\chi_{8048}(299,\cdot) χ8048(323,)\chi_{8048}(323,\cdot) χ8048(339,)\chi_{8048}(339,\cdot) χ8048(355,)\chi_{8048}(355,\cdot) χ8048(363,)\chi_{8048}(363,\cdot) χ8048(379,)\chi_{8048}(379,\cdot) χ8048(387,)\chi_{8048}(387,\cdot) χ8048(427,)\chi_{8048}(427,\cdot) χ8048(435,)\chi_{8048}(435,\cdot) χ8048(443,)\chi_{8048}(443,\cdot) χ8048(483,)\chi_{8048}(483,\cdot) χ8048(507,)\chi_{8048}(507,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1004)\Q(\zeta_{1004})
Fixed field: Number field defined by a degree 1004 polynomial (not computed)

Values on generators

(1007,6037,2017)(1007,6037,2017)(1,i,e(234251))(-1,i,e\left(\frac{234}{251}\right))

First values

aa 1-11133557799111113131515171719192121
χ8048(27,a) \chi_{ 8048 }(27, a) 1-111e(6871004)e\left(\frac{687}{1004}\right)e(1831004)e\left(\frac{183}{1004}\right)e(44251)e\left(\frac{44}{251}\right)e(185502)e\left(\frac{185}{502}\right)e(9091004)e\left(\frac{909}{1004}\right)e(3531004)e\left(\frac{353}{1004}\right)e(435502)e\left(\frac{435}{502}\right)e(123251)e\left(\frac{123}{251}\right)e(1991004)e\left(\frac{199}{1004}\right)e(8631004)e\left(\frac{863}{1004}\right)
sage: chi.jacobi_sum(n)
 
χ8048(27,a)   \chi_{ 8048 }(27,a) \; at   a=\;a = e.g. 2