from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8048, base_ring=CyclotomicField(1004))
M = H._module
chi = DirichletCharacter(H, M([502,251,936]))
pari: [g,chi] = znchar(Mod(27,8048))
χ8048(3,⋅)
χ8048(11,⋅)
χ8048(27,⋅)
χ8048(43,⋅)
χ8048(59,⋅)
χ8048(67,⋅)
χ8048(75,⋅)
χ8048(83,⋅)
χ8048(91,⋅)
χ8048(99,⋅)
χ8048(131,⋅)
χ8048(147,⋅)
χ8048(155,⋅)
χ8048(219,⋅)
χ8048(243,⋅)
χ8048(275,⋅)
χ8048(283,⋅)
χ8048(291,⋅)
χ8048(299,⋅)
χ8048(323,⋅)
χ8048(339,⋅)
χ8048(355,⋅)
χ8048(363,⋅)
χ8048(379,⋅)
χ8048(387,⋅)
χ8048(427,⋅)
χ8048(435,⋅)
χ8048(443,⋅)
χ8048(483,⋅)
χ8048(507,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1007,6037,2017) → (−1,i,e(251234))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ8048(27,a) |
−1 | 1 | e(1004687) | e(1004183) | e(25144) | e(502185) | e(1004909) | e(1004353) | e(502435) | e(251123) | e(1004199) | e(1004863) |