Basic properties
Modulus: | \(8048\) | |
Conductor: | \(8048\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(1004\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 8048.v
\(\chi_{8048}(3,\cdot)\) \(\chi_{8048}(11,\cdot)\) \(\chi_{8048}(27,\cdot)\) \(\chi_{8048}(43,\cdot)\) \(\chi_{8048}(59,\cdot)\) \(\chi_{8048}(67,\cdot)\) \(\chi_{8048}(75,\cdot)\) \(\chi_{8048}(83,\cdot)\) \(\chi_{8048}(91,\cdot)\) \(\chi_{8048}(99,\cdot)\) \(\chi_{8048}(131,\cdot)\) \(\chi_{8048}(147,\cdot)\) \(\chi_{8048}(155,\cdot)\) \(\chi_{8048}(219,\cdot)\) \(\chi_{8048}(243,\cdot)\) \(\chi_{8048}(275,\cdot)\) \(\chi_{8048}(283,\cdot)\) \(\chi_{8048}(291,\cdot)\) \(\chi_{8048}(299,\cdot)\) \(\chi_{8048}(323,\cdot)\) \(\chi_{8048}(339,\cdot)\) \(\chi_{8048}(355,\cdot)\) \(\chi_{8048}(363,\cdot)\) \(\chi_{8048}(379,\cdot)\) \(\chi_{8048}(387,\cdot)\) \(\chi_{8048}(427,\cdot)\) \(\chi_{8048}(435,\cdot)\) \(\chi_{8048}(443,\cdot)\) \(\chi_{8048}(483,\cdot)\) \(\chi_{8048}(507,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{1004})$ |
Fixed field: | Number field defined by a degree 1004 polynomial (not computed) |
Values on generators
\((1007,6037,2017)\) → \((-1,i,e\left(\frac{234}{251}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 8048 }(27, a) \) | \(-1\) | \(1\) | \(e\left(\frac{687}{1004}\right)\) | \(e\left(\frac{183}{1004}\right)\) | \(e\left(\frac{44}{251}\right)\) | \(e\left(\frac{185}{502}\right)\) | \(e\left(\frac{909}{1004}\right)\) | \(e\left(\frac{353}{1004}\right)\) | \(e\left(\frac{435}{502}\right)\) | \(e\left(\frac{123}{251}\right)\) | \(e\left(\frac{199}{1004}\right)\) | \(e\left(\frac{863}{1004}\right)\) |