Properties

Label 8112.3455
Modulus $8112$
Conductor $2028$
Order $78$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8112, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([39,0,39,71]))
 
pari: [g,chi] = znchar(Mod(3455,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(2028\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(78\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2028}(1427,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8112.ev

\(\chi_{8112}(95,\cdot)\) \(\chi_{8112}(335,\cdot)\) \(\chi_{8112}(719,\cdot)\) \(\chi_{8112}(959,\cdot)\) \(\chi_{8112}(1343,\cdot)\) \(\chi_{8112}(1583,\cdot)\) \(\chi_{8112}(1967,\cdot)\) \(\chi_{8112}(2207,\cdot)\) \(\chi_{8112}(2591,\cdot)\) \(\chi_{8112}(2831,\cdot)\) \(\chi_{8112}(3215,\cdot)\) \(\chi_{8112}(3455,\cdot)\) \(\chi_{8112}(3839,\cdot)\) \(\chi_{8112}(4463,\cdot)\) \(\chi_{8112}(4703,\cdot)\) \(\chi_{8112}(5087,\cdot)\) \(\chi_{8112}(5327,\cdot)\) \(\chi_{8112}(5711,\cdot)\) \(\chi_{8112}(5951,\cdot)\) \(\chi_{8112}(6335,\cdot)\) \(\chi_{8112}(6575,\cdot)\) \(\chi_{8112}(6959,\cdot)\) \(\chi_{8112}(7199,\cdot)\) \(\chi_{8112}(7823,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Values on generators

\((5071,6085,2705,3889)\) → \((-1,1,-1,e\left(\frac{71}{78}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(3455, a) \) \(1\)\(1\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{35}{39}\right)\)\(e\left(\frac{59}{78}\right)\)\(e\left(\frac{31}{78}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{13}\right)\)\(e\left(\frac{71}{78}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{23}{39}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(3455,a) \;\) at \(\;a = \) e.g. 2