Properties

Label 8112.6239
Modulus $8112$
Conductor $2028$
Order $26$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8112, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([13,0,13,5]))
 
pari: [g,chi] = znchar(Mod(6239,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(2028\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(26\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2028}(155,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8112.df

\(\chi_{8112}(623,\cdot)\) \(\chi_{8112}(1247,\cdot)\) \(\chi_{8112}(1871,\cdot)\) \(\chi_{8112}(2495,\cdot)\) \(\chi_{8112}(3119,\cdot)\) \(\chi_{8112}(3743,\cdot)\) \(\chi_{8112}(4367,\cdot)\) \(\chi_{8112}(4991,\cdot)\) \(\chi_{8112}(5615,\cdot)\) \(\chi_{8112}(6239,\cdot)\) \(\chi_{8112}(6863,\cdot)\) \(\chi_{8112}(7487,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 26.26.409808027834211389172943903711535494765866720064678008376474736787456.1

Values on generators

\((5071,6085,2705,3889)\) → \((-1,1,-1,e\left(\frac{5}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(6239, a) \) \(1\)\(1\)\(e\left(\frac{3}{13}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{21}{26}\right)\)\(e\left(\frac{15}{26}\right)\)\(1\)\(1\)\(e\left(\frac{6}{13}\right)\)\(e\left(\frac{5}{26}\right)\)\(e\left(\frac{7}{13}\right)\)\(e\left(\frac{4}{13}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(6239,a) \;\) at \(\;a = \) e.g. 2