Properties

Label 812.271
Modulus $812$
Conductor $812$
Order $84$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(812, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([42,70,69]))
 
pari: [g,chi] = znchar(Mod(271,812))
 

Basic properties

Modulus: \(812\)
Conductor: \(812\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 812.bu

\(\chi_{812}(3,\cdot)\) \(\chi_{812}(19,\cdot)\) \(\chi_{812}(31,\cdot)\) \(\chi_{812}(47,\cdot)\) \(\chi_{812}(131,\cdot)\) \(\chi_{812}(143,\cdot)\) \(\chi_{812}(159,\cdot)\) \(\chi_{812}(171,\cdot)\) \(\chi_{812}(243,\cdot)\) \(\chi_{812}(271,\cdot)\) \(\chi_{812}(311,\cdot)\) \(\chi_{812}(327,\cdot)\) \(\chi_{812}(367,\cdot)\) \(\chi_{812}(395,\cdot)\) \(\chi_{812}(467,\cdot)\) \(\chi_{812}(479,\cdot)\) \(\chi_{812}(495,\cdot)\) \(\chi_{812}(507,\cdot)\) \(\chi_{812}(591,\cdot)\) \(\chi_{812}(607,\cdot)\) \(\chi_{812}(619,\cdot)\) \(\chi_{812}(635,\cdot)\) \(\chi_{812}(675,\cdot)\) \(\chi_{812}(775,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((407,465,785)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{23}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 812 }(271, a) \) \(-1\)\(1\)\(e\left(\frac{37}{84}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{31}{84}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{84}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{10}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 812 }(271,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 812 }(271,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 812 }(271,·),\chi_{ 812 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 812 }(271,·)) \;\) at \(\; a,b = \) e.g. 1,2