sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(812, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,70,69]))
pari:[g,chi] = znchar(Mod(271,812))
Modulus: | 812 | |
Conductor: | 812 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 84 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ812(3,⋅)
χ812(19,⋅)
χ812(31,⋅)
χ812(47,⋅)
χ812(131,⋅)
χ812(143,⋅)
χ812(159,⋅)
χ812(171,⋅)
χ812(243,⋅)
χ812(271,⋅)
χ812(311,⋅)
χ812(327,⋅)
χ812(367,⋅)
χ812(395,⋅)
χ812(467,⋅)
χ812(479,⋅)
χ812(495,⋅)
χ812(507,⋅)
χ812(591,⋅)
χ812(607,⋅)
χ812(619,⋅)
χ812(635,⋅)
χ812(675,⋅)
χ812(775,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(407,465,785) → (−1,e(65),e(2823))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ812(271,a) |
−1 | 1 | e(8437) | e(215) | e(4237) | e(8431) | e(72) | e(2819) | e(121) | e(845) | e(4225) | e(2110) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)