Properties

Label 812.467
Modulus 812812
Conductor 812812
Order 8484
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(812, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([42,70,15]))
 
pari: [g,chi] = znchar(Mod(467,812))
 

Basic properties

Modulus: 812812
Conductor: 812812
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8484
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 812.bu

χ812(3,)\chi_{812}(3,\cdot) χ812(19,)\chi_{812}(19,\cdot) χ812(31,)\chi_{812}(31,\cdot) χ812(47,)\chi_{812}(47,\cdot) χ812(131,)\chi_{812}(131,\cdot) χ812(143,)\chi_{812}(143,\cdot) χ812(159,)\chi_{812}(159,\cdot) χ812(171,)\chi_{812}(171,\cdot) χ812(243,)\chi_{812}(243,\cdot) χ812(271,)\chi_{812}(271,\cdot) χ812(311,)\chi_{812}(311,\cdot) χ812(327,)\chi_{812}(327,\cdot) χ812(367,)\chi_{812}(367,\cdot) χ812(395,)\chi_{812}(395,\cdot) χ812(467,)\chi_{812}(467,\cdot) χ812(479,)\chi_{812}(479,\cdot) χ812(495,)\chi_{812}(495,\cdot) χ812(507,)\chi_{812}(507,\cdot) χ812(591,)\chi_{812}(591,\cdot) χ812(607,)\chi_{812}(607,\cdot) χ812(619,)\chi_{812}(619,\cdot) χ812(635,)\chi_{812}(635,\cdot) χ812(675,)\chi_{812}(675,\cdot) χ812(775,)\chi_{812}(775,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ84)\Q(\zeta_{84})
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

(407,465,785)(407,465,785)(1,e(56),e(528))(-1,e\left(\frac{5}{6}\right),e\left(\frac{5}{28}\right))

First values

aa 1-1113355991111131315151717191923232525
χ812(467,a) \chi_{ 812 }(467, a) 1-111e(1984)e\left(\frac{19}{84}\right)e(221)e\left(\frac{2}{21}\right)e(1942)e\left(\frac{19}{42}\right)e(2584)e\left(\frac{25}{84}\right)e(57)e\left(\frac{5}{7}\right)e(928)e\left(\frac{9}{28}\right)e(712)e\left(\frac{7}{12}\right)e(2384)e\left(\frac{23}{84}\right)e(3142)e\left(\frac{31}{42}\right)e(421)e\left(\frac{4}{21}\right)
sage: chi.jacobi_sum(n)
 
χ812(467,a)   \chi_{ 812 }(467,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ812(467,))   \tau_{ a }( \chi_{ 812 }(467,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ812(467,),χ812(n,))   J(\chi_{ 812 }(467,·),\chi_{ 812 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ812(467,))  K(a,b,\chi_{ 812 }(467,·)) \; at   a,b=\; a,b = e.g. 1,2