Properties

Label 819.eq
Modulus 819819
Conductor 819819
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,6,11]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(202,819))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 819819
Conductor: 819819
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.9076223692791829074146373.1

Characters in Galois orbit

Character 1-1 11 22 44 55 88 1010 1111 1616 1717 1919 2020
χ819(202,)\chi_{819}(202,\cdot) 11 11 ii 1-1 e(512)e\left(\frac{5}{12}\right) i-i e(23)e\left(\frac{2}{3}\right) i-i 11 e(13)e\left(\frac{1}{3}\right) e(112)e\left(\frac{1}{12}\right) e(1112)e\left(\frac{11}{12}\right)
χ819(223,)\chi_{819}(223,\cdot) 11 11 i-i 1-1 e(712)e\left(\frac{7}{12}\right) ii e(13)e\left(\frac{1}{3}\right) ii 11 e(23)e\left(\frac{2}{3}\right) e(1112)e\left(\frac{11}{12}\right) e(112)e\left(\frac{1}{12}\right)
χ819(349,)\chi_{819}(349,\cdot) 11 11 ii 1-1 e(112)e\left(\frac{1}{12}\right) i-i e(13)e\left(\frac{1}{3}\right) i-i 11 e(23)e\left(\frac{2}{3}\right) e(512)e\left(\frac{5}{12}\right) e(712)e\left(\frac{7}{12}\right)
χ819(643,)\chi_{819}(643,\cdot) 11 11 i-i 1-1 e(1112)e\left(\frac{11}{12}\right) ii e(23)e\left(\frac{2}{3}\right) ii 11 e(13)e\left(\frac{1}{3}\right) e(712)e\left(\frac{7}{12}\right) e(512)e\left(\frac{5}{12}\right)