sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8304, base_ring=CyclotomicField(86))
M = H._module
chi = DirichletCharacter(H, M([43,0,43,83]))
pari:[g,chi] = znchar(Mod(2495,8304))
χ8304(383,⋅)
χ8304(575,⋅)
χ8304(1151,⋅)
χ8304(1439,⋅)
χ8304(1535,⋅)
χ8304(1679,⋅)
χ8304(1967,⋅)
χ8304(2111,⋅)
χ8304(2303,⋅)
χ8304(2399,⋅)
χ8304(2447,⋅)
χ8304(2495,⋅)
χ8304(2543,⋅)
χ8304(2687,⋅)
χ8304(2783,⋅)
χ8304(2927,⋅)
χ8304(2975,⋅)
χ8304(3071,⋅)
χ8304(3311,⋅)
χ8304(3839,⋅)
χ8304(3983,⋅)
χ8304(4319,⋅)
χ8304(4415,⋅)
χ8304(4511,⋅)
χ8304(4655,⋅)
χ8304(5231,⋅)
χ8304(5279,⋅)
χ8304(5327,⋅)
χ8304(5567,⋅)
χ8304(5903,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1039,6229,5537,7441) → (−1,1,−1,e(8683))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ8304(2495,a) |
1 | 1 | e(436) | e(438) | e(8617) | e(4320) | e(4341) | e(4315) | e(4313) | e(4312) | e(8641) | e(8681) |
sage:chi.jacobi_sum(n)