from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8325, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([30,81,160]))
pari: [g,chi] = znchar(Mod(1487,8325))
χ8325(488,⋅)
χ8325(527,⋅)
χ8325(608,⋅)
χ8325(752,⋅)
χ8325(848,⋅)
χ8325(1217,⋅)
χ8325(1487,⋅)
χ8325(1847,⋅)
χ8325(1883,⋅)
χ8325(2153,⋅)
χ8325(2192,⋅)
χ8325(2273,⋅)
χ8325(2417,⋅)
χ8325(2513,⋅)
χ8325(2858,⋅)
χ8325(3083,⋅)
χ8325(3152,⋅)
χ8325(3272,⋅)
χ8325(3512,⋅)
χ8325(3548,⋅)
χ8325(3938,⋅)
χ8325(4178,⋅)
χ8325(4523,⋅)
χ8325(4547,⋅)
χ8325(4748,⋅)
χ8325(4817,⋅)
χ8325(4937,⋅)
χ8325(5177,⋅)
χ8325(5213,⋅)
χ8325(5483,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3701,7327,5626) → (e(61),e(209),e(98))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ8325(1487,a) |
1 | 1 | e(18091) | e(901) | e(3613) | e(6031) | e(301) | e(180119) | e(1513) | e(451) | e(180103) | e(9019) |