Properties

Label 8325.1487
Modulus 83258325
Conductor 83258325
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,81,160]))
 
pari: [g,chi] = znchar(Mod(1487,8325))
 

Basic properties

Modulus: 83258325
Conductor: 83258325
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8325.lp

χ8325(488,)\chi_{8325}(488,\cdot) χ8325(527,)\chi_{8325}(527,\cdot) χ8325(608,)\chi_{8325}(608,\cdot) χ8325(752,)\chi_{8325}(752,\cdot) χ8325(848,)\chi_{8325}(848,\cdot) χ8325(1217,)\chi_{8325}(1217,\cdot) χ8325(1487,)\chi_{8325}(1487,\cdot) χ8325(1847,)\chi_{8325}(1847,\cdot) χ8325(1883,)\chi_{8325}(1883,\cdot) χ8325(2153,)\chi_{8325}(2153,\cdot) χ8325(2192,)\chi_{8325}(2192,\cdot) χ8325(2273,)\chi_{8325}(2273,\cdot) χ8325(2417,)\chi_{8325}(2417,\cdot) χ8325(2513,)\chi_{8325}(2513,\cdot) χ8325(2858,)\chi_{8325}(2858,\cdot) χ8325(3083,)\chi_{8325}(3083,\cdot) χ8325(3152,)\chi_{8325}(3152,\cdot) χ8325(3272,)\chi_{8325}(3272,\cdot) χ8325(3512,)\chi_{8325}(3512,\cdot) χ8325(3548,)\chi_{8325}(3548,\cdot) χ8325(3938,)\chi_{8325}(3938,\cdot) χ8325(4178,)\chi_{8325}(4178,\cdot) χ8325(4523,)\chi_{8325}(4523,\cdot) χ8325(4547,)\chi_{8325}(4547,\cdot) χ8325(4748,)\chi_{8325}(4748,\cdot) χ8325(4817,)\chi_{8325}(4817,\cdot) χ8325(4937,)\chi_{8325}(4937,\cdot) χ8325(5177,)\chi_{8325}(5177,\cdot) χ8325(5213,)\chi_{8325}(5213,\cdot) χ8325(5483,)\chi_{8325}(5483,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(3701,7327,5626)(3701,7327,5626)(e(16),e(920),e(89))(e\left(\frac{1}{6}\right),e\left(\frac{9}{20}\right),e\left(\frac{8}{9}\right))

First values

aa 1-11122447788111113131414161617171919
χ8325(1487,a) \chi_{ 8325 }(1487, a) 1111e(91180)e\left(\frac{91}{180}\right)e(190)e\left(\frac{1}{90}\right)e(1336)e\left(\frac{13}{36}\right)e(3160)e\left(\frac{31}{60}\right)e(130)e\left(\frac{1}{30}\right)e(119180)e\left(\frac{119}{180}\right)e(1315)e\left(\frac{13}{15}\right)e(145)e\left(\frac{1}{45}\right)e(103180)e\left(\frac{103}{180}\right)e(1990)e\left(\frac{19}{90}\right)
sage: chi.jacobi_sum(n)
 
χ8325(1487,a)   \chi_{ 8325 }(1487,a) \; at   a=\;a = e.g. 2