Properties

Label 8325.3124
Modulus 83258325
Conductor 185185
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,2]))
 
pari: [g,chi] = znchar(Mod(3124,8325))
 

Basic properties

Modulus: 83258325
Conductor: 185185
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ185(164,)\chi_{185}(164,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8325.ex

χ8325(2449,)\chi_{8325}(2449,\cdot) χ8325(3124,)\chi_{8325}(3124,\cdot) χ8325(4474,)\chi_{8325}(4474,\cdot) χ8325(5374,)\chi_{8325}(5374,\cdot) χ8325(5599,)\chi_{8325}(5599,\cdot) χ8325(7174,)\chi_{8325}(7174,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(3701,7327,5626)(3701,7327,5626)(1,1,e(19))(1,-1,e\left(\frac{1}{9}\right))

First values

aa 1-11122447788111113131414161617171919
χ8325(3124,a) \chi_{ 8325 }(3124, a) 1111e(1118)e\left(\frac{11}{18}\right)e(29)e\left(\frac{2}{9}\right)e(118)e\left(\frac{1}{18}\right)e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)e(1318)e\left(\frac{13}{18}\right)e(23)e\left(\frac{2}{3}\right)e(49)e\left(\frac{4}{9}\right)e(518)e\left(\frac{5}{18}\right)e(89)e\left(\frac{8}{9}\right)
sage: chi.jacobi_sum(n)
 
χ8325(3124,a)   \chi_{ 8325 }(3124,a) \; at   a=\;a = e.g. 2