Properties

Label 841.25
Modulus $841$
Conductor $841$
Order $203$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(406))
 
M = H._module
 
chi = DirichletCharacter(H, M([302]))
 
pari: [g,chi] = znchar(Mod(25,841))
 

Basic properties

Modulus: \(841\)
Conductor: \(841\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(203\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 841.j

\(\chi_{841}(7,\cdot)\) \(\chi_{841}(16,\cdot)\) \(\chi_{841}(20,\cdot)\) \(\chi_{841}(23,\cdot)\) \(\chi_{841}(24,\cdot)\) \(\chi_{841}(25,\cdot)\) \(\chi_{841}(36,\cdot)\) \(\chi_{841}(45,\cdot)\) \(\chi_{841}(49,\cdot)\) \(\chi_{841}(52,\cdot)\) \(\chi_{841}(53,\cdot)\) \(\chi_{841}(54,\cdot)\) \(\chi_{841}(65,\cdot)\) \(\chi_{841}(74,\cdot)\) \(\chi_{841}(78,\cdot)\) \(\chi_{841}(81,\cdot)\) \(\chi_{841}(82,\cdot)\) \(\chi_{841}(83,\cdot)\) \(\chi_{841}(94,\cdot)\) \(\chi_{841}(103,\cdot)\) \(\chi_{841}(107,\cdot)\) \(\chi_{841}(110,\cdot)\) \(\chi_{841}(111,\cdot)\) \(\chi_{841}(112,\cdot)\) \(\chi_{841}(123,\cdot)\) \(\chi_{841}(132,\cdot)\) \(\chi_{841}(136,\cdot)\) \(\chi_{841}(139,\cdot)\) \(\chi_{841}(140,\cdot)\) \(\chi_{841}(141,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{203})$
Fixed field: Number field defined by a degree 203 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{151}{203}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 841 }(25, a) \) \(1\)\(1\)\(e\left(\frac{151}{203}\right)\)\(e\left(\frac{90}{203}\right)\)\(e\left(\frac{99}{203}\right)\)\(e\left(\frac{130}{203}\right)\)\(e\left(\frac{38}{203}\right)\)\(e\left(\frac{139}{203}\right)\)\(e\left(\frac{47}{203}\right)\)\(e\left(\frac{180}{203}\right)\)\(e\left(\frac{78}{203}\right)\)\(e\left(\frac{51}{203}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 841 }(25,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 841 }(25,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 841 }(25,·),\chi_{ 841 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 841 }(25,·)) \;\) at \(\; a,b = \) e.g. 1,2