sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(841, base_ring=CyclotomicField(406))
M = H._module
chi = DirichletCharacter(H, M([309]))
pari:[g,chi] = znchar(Mod(33,841))
Modulus: | 841 | |
Conductor: | 841 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 406 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ841(4,⋅)
χ841(5,⋅)
χ841(6,⋅)
χ841(9,⋅)
χ841(13,⋅)
χ841(22,⋅)
χ841(33,⋅)
χ841(34,⋅)
χ841(35,⋅)
χ841(38,⋅)
χ841(42,⋅)
χ841(51,⋅)
χ841(62,⋅)
χ841(64,⋅)
χ841(67,⋅)
χ841(71,⋅)
χ841(80,⋅)
χ841(91,⋅)
χ841(92,⋅)
χ841(93,⋅)
χ841(96,⋅)
χ841(100,⋅)
χ841(109,⋅)
χ841(120,⋅)
χ841(121,⋅)
χ841(122,⋅)
χ841(125,⋅)
χ841(129,⋅)
χ841(138,⋅)
χ841(149,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(406309)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ841(33,a) |
1 | 1 | e(406309) | e(406285) | e(203106) | e(203172) | e(20394) | e(20334) | e(406115) | e(20382) | e(406247) | e(406263) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)