Properties

Label 841.33
Modulus $841$
Conductor $841$
Order $406$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(406))
 
M = H._module
 
chi = DirichletCharacter(H, M([309]))
 
pari: [g,chi] = znchar(Mod(33,841))
 

Basic properties

Modulus: \(841\)
Conductor: \(841\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(406\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 841.k

\(\chi_{841}(4,\cdot)\) \(\chi_{841}(5,\cdot)\) \(\chi_{841}(6,\cdot)\) \(\chi_{841}(9,\cdot)\) \(\chi_{841}(13,\cdot)\) \(\chi_{841}(22,\cdot)\) \(\chi_{841}(33,\cdot)\) \(\chi_{841}(34,\cdot)\) \(\chi_{841}(35,\cdot)\) \(\chi_{841}(38,\cdot)\) \(\chi_{841}(42,\cdot)\) \(\chi_{841}(51,\cdot)\) \(\chi_{841}(62,\cdot)\) \(\chi_{841}(64,\cdot)\) \(\chi_{841}(67,\cdot)\) \(\chi_{841}(71,\cdot)\) \(\chi_{841}(80,\cdot)\) \(\chi_{841}(91,\cdot)\) \(\chi_{841}(92,\cdot)\) \(\chi_{841}(93,\cdot)\) \(\chi_{841}(96,\cdot)\) \(\chi_{841}(100,\cdot)\) \(\chi_{841}(109,\cdot)\) \(\chi_{841}(120,\cdot)\) \(\chi_{841}(121,\cdot)\) \(\chi_{841}(122,\cdot)\) \(\chi_{841}(125,\cdot)\) \(\chi_{841}(129,\cdot)\) \(\chi_{841}(138,\cdot)\) \(\chi_{841}(149,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{203})$
Fixed field: Number field defined by a degree 406 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{309}{406}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 841 }(33, a) \) \(1\)\(1\)\(e\left(\frac{309}{406}\right)\)\(e\left(\frac{285}{406}\right)\)\(e\left(\frac{106}{203}\right)\)\(e\left(\frac{172}{203}\right)\)\(e\left(\frac{94}{203}\right)\)\(e\left(\frac{34}{203}\right)\)\(e\left(\frac{115}{406}\right)\)\(e\left(\frac{82}{203}\right)\)\(e\left(\frac{247}{406}\right)\)\(e\left(\frac{263}{406}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 841 }(33,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 841 }(33,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 841 }(33,·),\chi_{ 841 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 841 }(33,·)) \;\) at \(\; a,b = \) e.g. 1,2