Properties

Label 841.610
Modulus $841$
Conductor $841$
Order $29$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(58))
 
M = H._module
 
chi = DirichletCharacter(H, M([42]))
 
pari: [g,chi] = znchar(Mod(610,841))
 

Basic properties

Modulus: \(841\)
Conductor: \(841\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(29\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 841.g

\(\chi_{841}(30,\cdot)\) \(\chi_{841}(59,\cdot)\) \(\chi_{841}(88,\cdot)\) \(\chi_{841}(117,\cdot)\) \(\chi_{841}(146,\cdot)\) \(\chi_{841}(175,\cdot)\) \(\chi_{841}(204,\cdot)\) \(\chi_{841}(233,\cdot)\) \(\chi_{841}(262,\cdot)\) \(\chi_{841}(291,\cdot)\) \(\chi_{841}(320,\cdot)\) \(\chi_{841}(349,\cdot)\) \(\chi_{841}(378,\cdot)\) \(\chi_{841}(407,\cdot)\) \(\chi_{841}(436,\cdot)\) \(\chi_{841}(465,\cdot)\) \(\chi_{841}(494,\cdot)\) \(\chi_{841}(523,\cdot)\) \(\chi_{841}(552,\cdot)\) \(\chi_{841}(581,\cdot)\) \(\chi_{841}(610,\cdot)\) \(\chi_{841}(639,\cdot)\) \(\chi_{841}(668,\cdot)\) \(\chi_{841}(697,\cdot)\) \(\chi_{841}(726,\cdot)\) \(\chi_{841}(755,\cdot)\) \(\chi_{841}(784,\cdot)\) \(\chi_{841}(813,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{29})$
Fixed field: Number field defined by a degree 29 polynomial

Values on generators

\(2\) → \(e\left(\frac{21}{29}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 841 }(610, a) \) \(1\)\(1\)\(e\left(\frac{21}{29}\right)\)\(e\left(\frac{25}{29}\right)\)\(e\left(\frac{13}{29}\right)\)\(e\left(\frac{20}{29}\right)\)\(e\left(\frac{17}{29}\right)\)\(e\left(\frac{8}{29}\right)\)\(e\left(\frac{5}{29}\right)\)\(e\left(\frac{21}{29}\right)\)\(e\left(\frac{12}{29}\right)\)\(e\left(\frac{19}{29}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 841 }(610,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 841 }(610,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 841 }(610,·),\chi_{ 841 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 841 }(610,·)) \;\) at \(\; a,b = \) e.g. 1,2