Properties

Label 845.506
Modulus 845845
Conductor 1313
Order 22
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1]))
 
pari: [g,chi] = znchar(Mod(506,845))
 

Basic properties

Modulus: 845845
Conductor: 1313
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ13(12,)\chi_{13}(12,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 845.c

χ845(506,)\chi_{845}(506,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(13)\Q(\sqrt{13})

Values on generators

(677,171)(677,171)(1,1)(1,-1)

First values

aa 1-11122334466778899111112121414
χ845(506,a) \chi_{ 845 }(506, a) 11111-111111-11-11-1111-11111
sage: chi.jacobi_sum(n)
 
χ845(506,a)   \chi_{ 845 }(506,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ845(506,))   \tau_{ a }( \chi_{ 845 }(506,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ845(506,),χ845(n,))   J(\chi_{ 845 }(506,·),\chi_{ 845 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ845(506,))  K(a,b,\chi_{ 845 }(506,·)) \; at   a,b=\; a,b = e.g. 1,2