Properties

Label 85.48
Modulus 8585
Conductor 8585
Order 1616
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,9]))
 
pari: [g,chi] = znchar(Mod(48,85))
 

Basic properties

Modulus: 8585
Conductor: 8585
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 85.o

χ85(3,)\chi_{85}(3,\cdot) χ85(7,)\chi_{85}(7,\cdot) χ85(27,)\chi_{85}(27,\cdot) χ85(48,)\chi_{85}(48,\cdot) χ85(57,)\chi_{85}(57,\cdot) χ85(62,)\chi_{85}(62,\cdot) χ85(63,)\chi_{85}(63,\cdot) χ85(73,)\chi_{85}(73,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.16.698833752810013621337890625.2

Values on generators

(52,71)(52,71)(i,e(916))(-i,e\left(\frac{9}{16}\right))

First values

aa 1-11122334466778899111112121313
χ85(48,a) \chi_{ 85 }(48, a) 1111e(58)e\left(\frac{5}{8}\right)e(1316)e\left(\frac{13}{16}\right)iie(716)e\left(\frac{7}{16}\right)e(1516)e\left(\frac{15}{16}\right)e(78)e\left(\frac{7}{8}\right)e(58)e\left(\frac{5}{8}\right)e(1516)e\left(\frac{15}{16}\right)e(116)e\left(\frac{1}{16}\right)1-1
sage: chi.jacobi_sum(n)
 
χ85(48,a)   \chi_{ 85 }(48,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ85(48,))   \tau_{ a }( \chi_{ 85 }(48,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ85(48,),χ85(n,))   J(\chi_{ 85 }(48,·),\chi_{ 85 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ85(48,))  K(a,b,\chi_{ 85 }(48,·)) \; at   a,b=\; a,b = e.g. 1,2