Properties

Label 8512.6863
Modulus $8512$
Conductor $2128$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,9,6,4]))
 
pari: [g,chi] = znchar(Mod(6863,8512))
 

Basic properties

Modulus: \(8512\)
Conductor: \(2128\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2128}(2075,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8512.io

\(\chi_{8512}(271,\cdot)\) \(\chi_{8512}(367,\cdot)\) \(\chi_{8512}(719,\cdot)\) \(\chi_{8512}(1263,\cdot)\) \(\chi_{8512}(2607,\cdot)\) \(\chi_{8512}(3855,\cdot)\) \(\chi_{8512}(4527,\cdot)\) \(\chi_{8512}(4623,\cdot)\) \(\chi_{8512}(4975,\cdot)\) \(\chi_{8512}(5519,\cdot)\) \(\chi_{8512}(6863,\cdot)\) \(\chi_{8512}(8111,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((5055,6917,7297,3137)\) → \((-1,i,e\left(\frac{1}{6}\right),e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 8512 }(6863, a) \) \(1\)\(1\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{13}{18}\right)\)\(-i\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{7}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8512 }(6863,a) \;\) at \(\;a = \) e.g. 2