Properties

Label 8512.6917
Modulus $8512$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,0,0]))
 
pari: [g,chi] = znchar(Mod(6917,8512))
 

Basic properties

Modulus: \(8512\)
Conductor: \(64\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{64}(5,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8512.fc

\(\chi_{8512}(533,\cdot)\) \(\chi_{8512}(1597,\cdot)\) \(\chi_{8512}(2661,\cdot)\) \(\chi_{8512}(3725,\cdot)\) \(\chi_{8512}(4789,\cdot)\) \(\chi_{8512}(5853,\cdot)\) \(\chi_{8512}(6917,\cdot)\) \(\chi_{8512}(7981,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{64})^+\)

Values on generators

\((5055,6917,7297,3137)\) → \((1,e\left(\frac{1}{16}\right),1,1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 8512 }(6917, a) \) \(1\)\(1\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(i\)\(-i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{9}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8512 }(6917,a) \;\) at \(\;a = \) e.g. 2