Properties

Label 8512.6917
Modulus 85128512
Conductor 6464
Order 1616
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8512, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,1,0,0]))
 
Copy content pari:[g,chi] = znchar(Mod(6917,8512))
 

Basic properties

Modulus: 85128512
Conductor: 6464
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1616
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ64(5,)\chi_{64}(5,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8512.fc

χ8512(533,)\chi_{8512}(533,\cdot) χ8512(1597,)\chi_{8512}(1597,\cdot) χ8512(2661,)\chi_{8512}(2661,\cdot) χ8512(3725,)\chi_{8512}(3725,\cdot) χ8512(4789,)\chi_{8512}(4789,\cdot) χ8512(5853,)\chi_{8512}(5853,\cdot) χ8512(6917,)\chi_{8512}(6917,\cdot) χ8512(7981,)\chi_{8512}(7981,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: Q(ζ64)+\Q(\zeta_{64})^+

Values on generators

(5055,6917,7297,3137)(5055,6917,7297,3137)(1,e(116),1,1)(1,e\left(\frac{1}{16}\right),1,1)

First values

aa 1-1113355991111131315151717232325252727
χ8512(6917,a) \chi_{ 8512 }(6917, a) 1111e(316)e\left(\frac{3}{16}\right)e(116)e\left(\frac{1}{16}\right)e(38)e\left(\frac{3}{8}\right)e(516)e\left(\frac{5}{16}\right)e(1516)e\left(\frac{15}{16}\right)iii-ie(78)e\left(\frac{7}{8}\right)e(18)e\left(\frac{1}{8}\right)e(916)e\left(\frac{9}{16}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ8512(6917,a)   \chi_{ 8512 }(6917,a) \; at   a=\;a = e.g. 2