from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8512, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,9,12,20]))
chi.galois_orbit()
[g,chi] = znchar(Mod(625,8512))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(8512\) | |
Conductor: | \(2128\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 2128.gu | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8512}(625,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(i\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{8512}(1201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(i\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{8512}(1297,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(-i\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{8512}(1745,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-i\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{8512}(3217,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(-i\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{8512}(4113,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(-i\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{8512}(4881,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(-i\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{8512}(5457,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(-i\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{8512}(5553,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(i\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{8512}(6001,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(i\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{8512}(7473,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(i\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{8512}(8369,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(i\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) |