from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8512, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([0,9,60,20]))
chi.galois_orbit()
[g,chi] = znchar(Mod(89,8512))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(8512\) | |
Conductor: | \(4256\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(72\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 4256.jt | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{72})$ |
Fixed field: | Number field defined by a degree 72 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8512}(89,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{8512}(185,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) |
\(\chi_{8512}(857,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{8512}(1321,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) |
\(\chi_{8512}(1865,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{8512}(2105,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{23}{24}\right)\) |
\(\chi_{8512}(2217,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) |
\(\chi_{8512}(2313,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{8512}(2985,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{8512}(3449,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{23}{24}\right)\) |
\(\chi_{8512}(3993,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{8512}(4233,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{8512}(4345,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{23}{24}\right)\) |
\(\chi_{8512}(4441,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{8512}(5113,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) |
\(\chi_{8512}(5577,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{8512}(6121,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{8512}(6361,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{8512}(6473,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{8512}(6569,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{8512}(7241,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{8512}(7705,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{8512}(8249,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) |
\(\chi_{8512}(8489,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) |