Properties

Label 8512.lh
Modulus $8512$
Conductor $4256$
Order $72$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,60,20]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(89,8512))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8512\)
Conductor: \(4256\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 4256.jt
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{8512}(89,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{8512}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{8512}(857,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{8512}(1321,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{8512}(1865,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{8512}(2105,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{8512}(2217,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{8512}(2313,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{8512}(2985,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{8512}(3449,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{8512}(3993,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{8512}(4233,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{8512}(4345,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{8512}(4441,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{8512}(5113,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{8512}(5577,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{8512}(6121,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{8512}(6361,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{8512}(6473,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{8512}(6569,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{8512}(7241,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{8512}(7705,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{8512}(8249,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{8512}(8489,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{24}\right)\)