from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8512, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([72,135,48,40]))
chi.galois_orbit()
[g,chi] = znchar(Mod(51,8512))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(8512\) | |
Conductor: | \(8512\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(144\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{144})$ |
Fixed field: | Number field defined by a degree 144 polynomial (not computed) |
First 31 of 48 characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8512}(51,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{144}\right)\) | \(e\left(\frac{7}{144}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) |
\(\chi_{8512}(219,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{115}{144}\right)\) | \(e\left(\frac{49}{144}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{23}{144}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{19}{48}\right)\) |
\(\chi_{8512}(459,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{144}\right)\) | \(e\left(\frac{29}{144}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{43}{144}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{23}{48}\right)\) |
\(\chi_{8512}(515,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{59}{144}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{13}{144}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{17}{48}\right)\) |
\(\chi_{8512}(907,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{144}\right)\) | \(e\left(\frac{125}{144}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{91}{144}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{23}{48}\right)\) |
\(\chi_{8512}(1003,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{144}\right)\) | \(e\left(\frac{37}{144}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{35}{144}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{31}{48}\right)\) |
\(\chi_{8512}(1115,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{144}\right)\) | \(e\left(\frac{97}{144}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{119}{144}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{19}{48}\right)\) |
\(\chi_{8512}(1283,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{97}{144}\right)\) | \(e\left(\frac{139}{144}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{77}{144}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{8512}(1523,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{144}\right)\) | \(e\left(\frac{119}{144}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{97}{144}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{5}{48}\right)\) |
\(\chi_{8512}(1579,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{144}\right)\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{67}{144}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{47}{48}\right)\) |
\(\chi_{8512}(1971,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{71}{144}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{1}{144}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{5}{48}\right)\) |
\(\chi_{8512}(2067,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{144}\right)\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{89}{144}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{13}{48}\right)\) |
\(\chi_{8512}(2179,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{144}\right)\) | \(e\left(\frac{43}{144}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{29}{144}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{8512}(2347,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{144}\right)\) | \(e\left(\frac{85}{144}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{131}{144}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{31}{48}\right)\) |
\(\chi_{8512}(2587,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{144}\right)\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{7}{144}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{8512}(2643,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{144}\right)\) | \(e\left(\frac{95}{144}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{29}{48}\right)\) |
\(\chi_{8512}(3035,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{131}{144}\right)\) | \(e\left(\frac{17}{144}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{55}{144}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{8512}(3131,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{139}{144}\right)\) | \(e\left(\frac{73}{144}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{143}{144}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{43}{48}\right)\) |
\(\chi_{8512}(3243,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{133}{144}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{31}{48}\right)\) |
\(\chi_{8512}(3411,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{31}{144}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{41}{144}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{13}{48}\right)\) |
\(\chi_{8512}(3651,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{144}\right)\) | \(e\left(\frac{11}{144}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{17}{48}\right)\) |
\(\chi_{8512}(3707,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{144}\right)\) | \(e\left(\frac{41}{144}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{31}{144}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{11}{48}\right)\) |
\(\chi_{8512}(4099,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{113}{144}\right)\) | \(e\left(\frac{107}{144}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{109}{144}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{17}{48}\right)\) |
\(\chi_{8512}(4195,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{19}{144}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{53}{144}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{25}{48}\right)\) |
\(\chi_{8512}(4307,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{109}{144}\right)\) | \(e\left(\frac{79}{144}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{137}{144}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{13}{48}\right)\) |
\(\chi_{8512}(4475,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{144}\right)\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{95}{144}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{43}{48}\right)\) |
\(\chi_{8512}(4715,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{143}{144}\right)\) | \(e\left(\frac{101}{144}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{115}{144}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{47}{48}\right)\) |
\(\chi_{8512}(4771,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{137}{144}\right)\) | \(e\left(\frac{131}{144}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{85}{144}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{41}{48}\right)\) |
\(\chi_{8512}(5163,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{95}{144}\right)\) | \(e\left(\frac{53}{144}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{19}{144}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{47}{48}\right)\) |
\(\chi_{8512}(5259,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{103}{144}\right)\) | \(e\left(\frac{109}{144}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{107}{144}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{7}{48}\right)\) |
\(\chi_{8512}(5371,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{91}{144}\right)\) | \(e\left(\frac{25}{144}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{47}{144}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{43}{48}\right)\) |