Properties

Label 855.374
Modulus 855855
Conductor 855855
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,9,5]))
 
pari: [g,chi] = znchar(Mod(374,855))
 

Basic properties

Modulus: 855855
Conductor: 855855
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 855.co

χ855(299,)\chi_{855}(299,\cdot) χ855(344,)\chi_{855}(344,\cdot) χ855(374,)\chi_{855}(374,\cdot) χ855(509,)\chi_{855}(509,\cdot) χ855(599,)\chi_{855}(599,\cdot) χ855(839,)\chi_{855}(839,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.18.81623484842733584357749488935542564453125.2

Values on generators

(191,172,496)(191,172,496)(e(56),1,e(518))(e\left(\frac{5}{6}\right),-1,e\left(\frac{5}{18}\right))

First values

aa 1-11122447788111113131414161617172222
χ855(374,a) \chi_{ 855 }(374, a) 1111e(1118)e\left(\frac{11}{18}\right)e(29)e\left(\frac{2}{9}\right)1-1e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)e(59)e\left(\frac{5}{9}\right)e(19)e\left(\frac{1}{9}\right)e(49)e\left(\frac{4}{9}\right)e(79)e\left(\frac{7}{9}\right)e(79)e\left(\frac{7}{9}\right)
sage: chi.jacobi_sum(n)
 
χ855(374,a)   \chi_{ 855 }(374,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ855(374,))   \tau_{ a }( \chi_{ 855 }(374,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ855(374,),χ855(n,))   J(\chi_{ 855 }(374,·),\chi_{ 855 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ855(374,))  K(a,b,\chi_{ 855 }(374,·)) \; at   a,b=\; a,b = e.g. 1,2