sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(855, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([15,9,5]))
pari:[g,chi] = znchar(Mod(374,855))
Modulus: | 855 | |
Conductor: | 855 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 18 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ855(299,⋅)
χ855(344,⋅)
χ855(374,⋅)
χ855(509,⋅)
χ855(599,⋅)
χ855(839,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,172,496) → (e(65),−1,e(185))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ855(374,a) |
1 | 1 | e(1811) | e(92) | −1 | e(65) | e(61) | e(95) | e(91) | e(94) | e(97) | e(97) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)