Properties

Label 855.508
Modulus $855$
Conductor $855$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,27,14]))
 
pari: [g,chi] = znchar(Mod(508,855))
 

Basic properties

Modulus: \(855\)
Conductor: \(855\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 855.dq

\(\chi_{855}(22,\cdot)\) \(\chi_{855}(193,\cdot)\) \(\chi_{855}(337,\cdot)\) \(\chi_{855}(382,\cdot)\) \(\chi_{855}(412,\cdot)\) \(\chi_{855}(508,\cdot)\) \(\chi_{855}(547,\cdot)\) \(\chi_{855}(553,\cdot)\) \(\chi_{855}(583,\cdot)\) \(\chi_{855}(637,\cdot)\) \(\chi_{855}(718,\cdot)\) \(\chi_{855}(808,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.17849776228866488737715206984999102954438314099226129130939288096733391284942626953125.1

Values on generators

\((191,172,496)\) → \((e\left(\frac{1}{3}\right),-i,e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 855 }(508, a) \) \(1\)\(1\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(1\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{17}{36}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 855 }(508,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 855 }(508,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 855 }(508,·),\chi_{ 855 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 855 }(508,·)) \;\) at \(\; a,b = \) e.g. 1,2