sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(85600, base_ring=CyclotomicField(2120))
M = H._module
chi = DirichletCharacter(H, M([0,795,954,1260]))
pari:[g,chi] = znchar(Mod(1437,85600))
Modulus: | 85600 | |
Conductor: | 85600 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 2120 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ85600(77,⋅)
χ85600(133,⋅)
χ85600(317,⋅)
χ85600(613,⋅)
χ85600(773,⋅)
χ85600(853,⋅)
χ85600(877,⋅)
χ85600(933,⋅)
χ85600(1013,⋅)
χ85600(1037,⋅)
χ85600(1173,⋅)
χ85600(1197,⋅)
χ85600(1413,⋅)
χ85600(1437,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(26751,32101,82177,16801) → (1,e(83),e(209),e(10663))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ85600(1437,a) |
1 | 1 | e(21201863) | e(10659) | e(1060803) | e(2120319) | e(21201051) | e(1060621) | e(2120177) | e(2120923) | e(26513) | e(21201349) |
sage:chi.jacobi_sum(n)