sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(85600, base_ring=CyclotomicField(2120))
M = H._module
chi = DirichletCharacter(H, M([0,795,848,260]))
pari:[g,chi] = znchar(Mod(381,85600))
Modulus: | 85600 | |
Conductor: | 85600 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 2120 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ85600(21,⋅)
χ85600(181,⋅)
χ85600(221,⋅)
χ85600(341,⋅)
χ85600(381,⋅)
χ85600(541,⋅)
χ85600(581,⋅)
χ85600(781,⋅)
χ85600(821,⋅)
χ85600(861,⋅)
χ85600(981,⋅)
χ85600(1021,⋅)
χ85600(1061,⋅)
χ85600(1141,⋅)
χ85600(1261,⋅)
χ85600(1381,⋅)
χ85600(1461,⋅)
χ85600(1541,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(26751,32101,82177,16801) → (1,e(83),e(52),e(10613))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ85600(381,a) |
−1 | 1 | e(21201081) | e(2125) | e(106021) | e(21202063) | e(21201997) | e(26568) | e(2120829) | e(21201131) | e(1060269) | e(21201123) |
sage:chi.jacobi_sum(n)