Properties

Label 85600.779
Modulus $85600$
Conductor $85600$
Order $2120$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85600, base_ring=CyclotomicField(2120))
 
M = H._module
 
chi = DirichletCharacter(H, M([1060,1325,212,240]))
 
pari: [g,chi] = znchar(Mod(779,85600))
 

Basic properties

Modulus: \(85600\)
Conductor: \(85600\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2120\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 85600.ii

\(\chi_{85600}(19,\cdot)\) \(\chi_{85600}(539,\cdot)\) \(\chi_{85600}(579,\cdot)\) \(\chi_{85600}(779,\cdot)\) \(\chi_{85600}(859,\cdot)\) \(\chi_{85600}(939,\cdot)\) \(\chi_{85600}(979,\cdot)\) \(\chi_{85600}(1019,\cdot)\) \(\chi_{85600}(1139,\cdot)\) \(\chi_{85600}(1219,\cdot)\) \(\chi_{85600}(1539,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2120})$
Fixed field: Number field defined by a degree 2120 polynomial (not computed)

Values on generators

\((26751,32101,82177,16801)\) → \((-1,e\left(\frac{5}{8}\right),e\left(\frac{1}{10}\right),e\left(\frac{6}{53}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 85600 }(779, a) \) \(-1\)\(1\)\(e\left(\frac{2119}{2120}\right)\)\(e\left(\frac{25}{212}\right)\)\(e\left(\frac{1059}{1060}\right)\)\(e\left(\frac{1517}{2120}\right)\)\(e\left(\frac{1823}{2120}\right)\)\(e\left(\frac{22}{265}\right)\)\(e\left(\frac{1071}{2120}\right)\)\(e\left(\frac{249}{2120}\right)\)\(e\left(\frac{391}{1060}\right)\)\(e\left(\frac{2117}{2120}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 85600 }(779,a) \;\) at \(\;a = \) e.g. 2