sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([0,63,56]))
pari:[g,chi] = znchar(Mod(589,864))
Modulus: | 864 | |
Conductor: | 864 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 72 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ864(13,⋅)
χ864(61,⋅)
χ864(85,⋅)
χ864(133,⋅)
χ864(157,⋅)
χ864(205,⋅)
χ864(229,⋅)
χ864(277,⋅)
χ864(301,⋅)
χ864(349,⋅)
χ864(373,⋅)
χ864(421,⋅)
χ864(445,⋅)
χ864(493,⋅)
χ864(517,⋅)
χ864(565,⋅)
χ864(589,⋅)
χ864(637,⋅)
χ864(661,⋅)
χ864(709,⋅)
χ864(733,⋅)
χ864(781,⋅)
χ864(805,⋅)
χ864(853,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(703,325,353) → (1,e(87),e(97))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ864(589,a) |
1 | 1 | e(7255) | e(367) | e(7235) | e(7225) | e(61) | e(2411) | e(3629) | e(3619) | e(7229) | e(95) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)