Properties

Label 864.205
Modulus 864864
Conductor 864864
Order 7272
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,63,16]))
 
pari: [g,chi] = znchar(Mod(205,864))
 

Basic properties

Modulus: 864864
Conductor: 864864
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7272
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 864.bu

χ864(13,)\chi_{864}(13,\cdot) χ864(61,)\chi_{864}(61,\cdot) χ864(85,)\chi_{864}(85,\cdot) χ864(133,)\chi_{864}(133,\cdot) χ864(157,)\chi_{864}(157,\cdot) χ864(205,)\chi_{864}(205,\cdot) χ864(229,)\chi_{864}(229,\cdot) χ864(277,)\chi_{864}(277,\cdot) χ864(301,)\chi_{864}(301,\cdot) χ864(349,)\chi_{864}(349,\cdot) χ864(373,)\chi_{864}(373,\cdot) χ864(421,)\chi_{864}(421,\cdot) χ864(445,)\chi_{864}(445,\cdot) χ864(493,)\chi_{864}(493,\cdot) χ864(517,)\chi_{864}(517,\cdot) χ864(565,)\chi_{864}(565,\cdot) χ864(589,)\chi_{864}(589,\cdot) χ864(637,)\chi_{864}(637,\cdot) χ864(661,)\chi_{864}(661,\cdot) χ864(709,)\chi_{864}(709,\cdot) χ864(733,)\chi_{864}(733,\cdot) χ864(781,)\chi_{864}(781,\cdot) χ864(805,)\chi_{864}(805,\cdot) χ864(853,)\chi_{864}(853,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ72)\Q(\zeta_{72})
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

(703,325,353)(703,325,353)(1,e(78),e(29))(1,e\left(\frac{7}{8}\right),e\left(\frac{2}{9}\right))

First values

aa 1-111557711111313171719192323252529293131
χ864(205,a) \chi_{ 864 }(205, a) 1111e(7172)e\left(\frac{71}{72}\right)e(1136)e\left(\frac{11}{36}\right)e(1972)e\left(\frac{19}{72}\right)e(6572)e\left(\frac{65}{72}\right)e(56)e\left(\frac{5}{6}\right)e(1924)e\left(\frac{19}{24}\right)e(2536)e\left(\frac{25}{36}\right)e(3536)e\left(\frac{35}{36}\right)e(6172)e\left(\frac{61}{72}\right)e(49)e\left(\frac{4}{9}\right)
sage: chi.jacobi_sum(n)
 
χ864(205,a)   \chi_{ 864 }(205,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ864(205,))   \tau_{ a }( \chi_{ 864 }(205,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ864(205,),χ864(n,))   J(\chi_{ 864 }(205,·),\chi_{ 864 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ864(205,))  K(a,b,\chi_{ 864 }(205,·)) \; at   a,b=\; a,b = e.g. 1,2