Properties

Label 1-864-864.205-r0-0-0
Degree 11
Conductor 864864
Sign 0.964+0.265i0.964 + 0.265i
Analytic cond. 4.012394.01239
Root an. cond. 4.012394.01239
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.996 − 0.0871i)5-s + (−0.342 + 0.939i)7-s + (−0.0871 + 0.996i)11-s + (0.819 − 0.573i)13-s + (0.5 − 0.866i)17-s + (0.258 − 0.965i)19-s + (−0.342 − 0.939i)23-s + (0.984 − 0.173i)25-s + (0.573 − 0.819i)29-s + (−0.939 + 0.342i)31-s + (−0.258 + 0.965i)35-s + (0.258 + 0.965i)37-s + (0.984 + 0.173i)41-s + (−0.0871 + 0.996i)43-s + (0.939 + 0.342i)47-s + ⋯
L(s)  = 1  + (0.996 − 0.0871i)5-s + (−0.342 + 0.939i)7-s + (−0.0871 + 0.996i)11-s + (0.819 − 0.573i)13-s + (0.5 − 0.866i)17-s + (0.258 − 0.965i)19-s + (−0.342 − 0.939i)23-s + (0.984 − 0.173i)25-s + (0.573 − 0.819i)29-s + (−0.939 + 0.342i)31-s + (−0.258 + 0.965i)35-s + (0.258 + 0.965i)37-s + (0.984 + 0.173i)41-s + (−0.0871 + 0.996i)43-s + (0.939 + 0.342i)47-s + ⋯

Functional equation

Λ(s)=(864s/2ΓR(s)L(s)=((0.964+0.265i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(864s/2ΓR(s)L(s)=((0.964+0.265i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 864864    =    25332^{5} \cdot 3^{3}
Sign: 0.964+0.265i0.964 + 0.265i
Analytic conductor: 4.012394.01239
Root analytic conductor: 4.012394.01239
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ864(205,)\chi_{864} (205, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 864, (0: ), 0.964+0.265i)(1,\ 864,\ (0:\ ),\ 0.964 + 0.265i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.803800447+0.2441505423i1.803800447 + 0.2441505423i
L(12)L(\frac12) \approx 1.803800447+0.2441505423i1.803800447 + 0.2441505423i
L(1)L(1) \approx 1.296878872+0.09371753610i1.296878872 + 0.09371753610i
L(1)L(1) \approx 1.296878872+0.09371753610i1.296878872 + 0.09371753610i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
good5 1+(0.9960.0871i)T 1 + (0.996 - 0.0871i)T
7 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
11 1+(0.0871+0.996i)T 1 + (-0.0871 + 0.996i)T
13 1+(0.8190.573i)T 1 + (0.819 - 0.573i)T
17 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
19 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
23 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
29 1+(0.5730.819i)T 1 + (0.573 - 0.819i)T
31 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
37 1+(0.258+0.965i)T 1 + (0.258 + 0.965i)T
41 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
43 1+(0.0871+0.996i)T 1 + (-0.0871 + 0.996i)T
47 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
53 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
59 1+(0.9960.0871i)T 1 + (0.996 - 0.0871i)T
61 1+(0.422+0.906i)T 1 + (0.422 + 0.906i)T
67 1+(0.819+0.573i)T 1 + (-0.819 + 0.573i)T
71 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
73 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
79 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
83 1+(0.573+0.819i)T 1 + (-0.573 + 0.819i)T
89 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
97 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.84085440629209709749857411978, −21.29109434234872581977458446136, −20.57109747389293440064805978953, −19.61032155886614708597558725864, −18.80103062712700591713457512404, −18.06743957062319224796935776450, −17.10910522291164827527141837948, −16.52988145110374139804574188842, −15.85629988571582966054673083381, −14.37251412064146922453843933206, −14.042445064380197411027083816492, −13.25087432999963770540171276234, −12.485705522814100046262047132543, −11.16212164965381078174990915811, −10.59462145739377390210004410200, −9.77235649998700492306334538121, −8.92386395780013304959541196043, −7.94862026812815261199522901102, −6.91647264549508182728687962968, −6.00846982959666706973764716045, −5.47442188447160998465713539941, −3.9119126623398119641537698959, −3.40681235282972329795955884761, −1.94049723952575976050233836904, −1.04615363485606904254256874829, 1.09986075365189453187182618083, 2.385257017036272844487443306652, 2.916946099795347383326827126100, 4.474179815450682617911603718218, 5.35574685739586951680019852237, 6.105085032770438946096991980522, 6.94891851666980086714267135862, 8.12274308644554053823700292390, 9.108656994575595431906524602518, 9.665705463045328407891061836130, 10.49996461096942364303450248755, 11.57813255212321489665523958776, 12.53086299303007670358368641601, 13.09130668049269383212914829022, 14.00315693968640473714388566314, 14.87292839314548991179044700126, 15.71054926607245208963800666718, 16.40540636123619913153245260647, 17.545172102013838547813484943422, 18.091159956512087817191858935925, 18.64820961528127132232851922814, 19.83255823692371378954028217627, 20.64148333353661678951507189375, 21.20416893046263622684919079080, 22.24040673654064769862452251518

Graph of the ZZ-function along the critical line