L(s) = 1 | + (0.996 − 0.0871i)5-s + (−0.342 + 0.939i)7-s + (−0.0871 + 0.996i)11-s + (0.819 − 0.573i)13-s + (0.5 − 0.866i)17-s + (0.258 − 0.965i)19-s + (−0.342 − 0.939i)23-s + (0.984 − 0.173i)25-s + (0.573 − 0.819i)29-s + (−0.939 + 0.342i)31-s + (−0.258 + 0.965i)35-s + (0.258 + 0.965i)37-s + (0.984 + 0.173i)41-s + (−0.0871 + 0.996i)43-s + (0.939 + 0.342i)47-s + ⋯ |
L(s) = 1 | + (0.996 − 0.0871i)5-s + (−0.342 + 0.939i)7-s + (−0.0871 + 0.996i)11-s + (0.819 − 0.573i)13-s + (0.5 − 0.866i)17-s + (0.258 − 0.965i)19-s + (−0.342 − 0.939i)23-s + (0.984 − 0.173i)25-s + (0.573 − 0.819i)29-s + (−0.939 + 0.342i)31-s + (−0.258 + 0.965i)35-s + (0.258 + 0.965i)37-s + (0.984 + 0.173i)41-s + (−0.0871 + 0.996i)43-s + (0.939 + 0.342i)47-s + ⋯ |
Λ(s)=(=(864s/2ΓR(s)L(s)(0.964+0.265i)Λ(1−s)
Λ(s)=(=(864s/2ΓR(s)L(s)(0.964+0.265i)Λ(1−s)
Degree: |
1 |
Conductor: |
864
= 25⋅33
|
Sign: |
0.964+0.265i
|
Analytic conductor: |
4.01239 |
Root analytic conductor: |
4.01239 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ864(205,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 864, (0: ), 0.964+0.265i)
|
Particular Values
L(21) |
≈ |
1.803800447+0.2441505423i |
L(21) |
≈ |
1.803800447+0.2441505423i |
L(1) |
≈ |
1.296878872+0.09371753610i |
L(1) |
≈ |
1.296878872+0.09371753610i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(0.996−0.0871i)T |
| 7 | 1+(−0.342+0.939i)T |
| 11 | 1+(−0.0871+0.996i)T |
| 13 | 1+(0.819−0.573i)T |
| 17 | 1+(0.5−0.866i)T |
| 19 | 1+(0.258−0.965i)T |
| 23 | 1+(−0.342−0.939i)T |
| 29 | 1+(0.573−0.819i)T |
| 31 | 1+(−0.939+0.342i)T |
| 37 | 1+(0.258+0.965i)T |
| 41 | 1+(0.984+0.173i)T |
| 43 | 1+(−0.0871+0.996i)T |
| 47 | 1+(0.939+0.342i)T |
| 53 | 1+(−0.707+0.707i)T |
| 59 | 1+(0.996−0.0871i)T |
| 61 | 1+(0.422+0.906i)T |
| 67 | 1+(−0.819+0.573i)T |
| 71 | 1+(0.866+0.5i)T |
| 73 | 1+(0.866−0.5i)T |
| 79 | 1+(−0.173−0.984i)T |
| 83 | 1+(−0.573+0.819i)T |
| 89 | 1+(−0.866+0.5i)T |
| 97 | 1+(0.766−0.642i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.84085440629209709749857411978, −21.29109434234872581977458446136, −20.57109747389293440064805978953, −19.61032155886614708597558725864, −18.80103062712700591713457512404, −18.06743957062319224796935776450, −17.10910522291164827527141837948, −16.52988145110374139804574188842, −15.85629988571582966054673083381, −14.37251412064146922453843933206, −14.042445064380197411027083816492, −13.25087432999963770540171276234, −12.485705522814100046262047132543, −11.16212164965381078174990915811, −10.59462145739377390210004410200, −9.77235649998700492306334538121, −8.92386395780013304959541196043, −7.94862026812815261199522901102, −6.91647264549508182728687962968, −6.00846982959666706973764716045, −5.47442188447160998465713539941, −3.9119126623398119641537698959, −3.40681235282972329795955884761, −1.94049723952575976050233836904, −1.04615363485606904254256874829,
1.09986075365189453187182618083, 2.385257017036272844487443306652, 2.916946099795347383326827126100, 4.474179815450682617911603718218, 5.35574685739586951680019852237, 6.105085032770438946096991980522, 6.94891851666980086714267135862, 8.12274308644554053823700292390, 9.108656994575595431906524602518, 9.665705463045328407891061836130, 10.49996461096942364303450248755, 11.57813255212321489665523958776, 12.53086299303007670358368641601, 13.09130668049269383212914829022, 14.00315693968640473714388566314, 14.87292839314548991179044700126, 15.71054926607245208963800666718, 16.40540636123619913153245260647, 17.545172102013838547813484943422, 18.091159956512087817191858935925, 18.64820961528127132232851922814, 19.83255823692371378954028217627, 20.64148333353661678951507189375, 21.20416893046263622684919079080, 22.24040673654064769862452251518