sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(86400, base_ring=CyclotomicField(1440))
M = H._module
chi = DirichletCharacter(H, M([720,1035,1120,432]))
pari:[g,chi] = znchar(Mod(1939,86400))
Modulus: | 86400 | |
Conductor: | 86400 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 1440 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ86400(139,⋅)
χ86400(259,⋅)
χ86400(619,⋅)
χ86400(859,⋅)
χ86400(979,⋅)
χ86400(1219,⋅)
χ86400(1339,⋅)
χ86400(1579,⋅)
χ86400(1939,⋅)
χ86400(2059,⋅)
χ86400(2419,⋅)
χ86400(2659,⋅)
χ86400(2779,⋅)
χ86400(3019,⋅)
χ86400(3139,⋅)
χ86400(3379,⋅)
χ86400(3739,⋅)
χ86400(3859,⋅)
χ86400(4219,⋅)
χ86400(4459,⋅)
χ86400(4579,⋅)
χ86400(4819,⋅)
χ86400(4939,⋅)
χ86400(5179,⋅)
χ86400(5539,⋅)
χ86400(5659,⋅)
χ86400(6019,⋅)
χ86400(6259,⋅)
χ86400(6379,⋅)
χ86400(6619,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(71551,29701,6401,72577) → (−1,e(3223),e(97),e(103))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ86400(1939,a) |
−1 | 1 | e(14491) | e(1440727) | e(14401013) | e(12083) | e(480367) | e(720301) | e(14401129) | e(18037) | e(480161) | e(720709) |
sage:chi.jacobi_sum(n)