Properties

Label 86400.1939
Modulus 8640086400
Conductor 8640086400
Order 14401440
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(86400, base_ring=CyclotomicField(1440))
 
M = H._module
 
chi = DirichletCharacter(H, M([720,1035,1120,432]))
 
pari: [g,chi] = znchar(Mod(1939,86400))
 

Basic properties

Modulus: 8640086400
Conductor: 8640086400
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 14401440
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 86400.uh

χ86400(139,)\chi_{86400}(139,\cdot) χ86400(259,)\chi_{86400}(259,\cdot) χ86400(619,)\chi_{86400}(619,\cdot) χ86400(859,)\chi_{86400}(859,\cdot) χ86400(979,)\chi_{86400}(979,\cdot) χ86400(1219,)\chi_{86400}(1219,\cdot) χ86400(1339,)\chi_{86400}(1339,\cdot) χ86400(1579,)\chi_{86400}(1579,\cdot) χ86400(1939,)\chi_{86400}(1939,\cdot) χ86400(2059,)\chi_{86400}(2059,\cdot) χ86400(2419,)\chi_{86400}(2419,\cdot) χ86400(2659,)\chi_{86400}(2659,\cdot) χ86400(2779,)\chi_{86400}(2779,\cdot) χ86400(3019,)\chi_{86400}(3019,\cdot) χ86400(3139,)\chi_{86400}(3139,\cdot) χ86400(3379,)\chi_{86400}(3379,\cdot) χ86400(3739,)\chi_{86400}(3739,\cdot) χ86400(3859,)\chi_{86400}(3859,\cdot) χ86400(4219,)\chi_{86400}(4219,\cdot) χ86400(4459,)\chi_{86400}(4459,\cdot) χ86400(4579,)\chi_{86400}(4579,\cdot) χ86400(4819,)\chi_{86400}(4819,\cdot) χ86400(4939,)\chi_{86400}(4939,\cdot) χ86400(5179,)\chi_{86400}(5179,\cdot) χ86400(5539,)\chi_{86400}(5539,\cdot) χ86400(5659,)\chi_{86400}(5659,\cdot) χ86400(6019,)\chi_{86400}(6019,\cdot) χ86400(6259,)\chi_{86400}(6259,\cdot) χ86400(6379,)\chi_{86400}(6379,\cdot) χ86400(6619,)\chi_{86400}(6619,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1440)\Q(\zeta_{1440})
Fixed field: Number field defined by a degree 1440 polynomial (not computed)

Values on generators

(71551,29701,6401,72577)(71551,29701,6401,72577)(1,e(2332),e(79),e(310))(-1,e\left(\frac{23}{32}\right),e\left(\frac{7}{9}\right),e\left(\frac{3}{10}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ86400(1939,a) \chi_{ 86400 }(1939, a) 1-111e(91144)e\left(\frac{91}{144}\right)e(7271440)e\left(\frac{727}{1440}\right)e(10131440)e\left(\frac{1013}{1440}\right)e(83120)e\left(\frac{83}{120}\right)e(367480)e\left(\frac{367}{480}\right)e(301720)e\left(\frac{301}{720}\right)e(11291440)e\left(\frac{1129}{1440}\right)e(37180)e\left(\frac{37}{180}\right)e(161480)e\left(\frac{161}{480}\right)e(709720)e\left(\frac{709}{720}\right)
sage: chi.jacobi_sum(n)
 
χ86400(1939,a)   \chi_{ 86400 }(1939,a) \; at   a=\;a = e.g. 2