from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(867, base_ring=CyclotomicField(34))
M = H._module
chi = DirichletCharacter(H, M([0,27]))
chi.galois_orbit()
[g,chi] = znchar(Mod(16,867))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(867\) | |
Conductor: | \(289\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(34\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 289.g | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{17})\) |
Fixed field: | Number field defined by a degree 34 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{867}(16,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{17}\right)\) | \(e\left(\frac{13}{17}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{11}{17}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{9}{34}\right)\) | \(e\left(\frac{11}{17}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{9}{17}\right)\) |
\(\chi_{867}(67,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{17}\right)\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{10}{17}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{19}{34}\right)\) | \(e\left(\frac{10}{17}\right)\) | \(e\left(\frac{13}{34}\right)\) | \(e\left(\frac{2}{17}\right)\) |
\(\chi_{867}(118,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{6}{17}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{9}{17}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{9}{17}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{12}{17}\right)\) |
\(\chi_{867}(169,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{14}{17}\right)\) | \(e\left(\frac{11}{17}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{13}{34}\right)\) | \(e\left(\frac{8}{17}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{8}{17}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{5}{17}\right)\) |
\(\chi_{867}(220,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{17}\right)\) | \(e\left(\frac{16}{17}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{19}{34}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{15}{17}\right)\) |
\(\chi_{867}(271,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{17}\right)\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{6}{17}\right)\) | \(e\left(\frac{9}{34}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{6}{17}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{8}{17}\right)\) |
\(\chi_{867}(322,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{17}\right)\) | \(e\left(\frac{9}{17}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{23}{34}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{1}{17}\right)\) |
\(\chi_{867}(373,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{14}{17}\right)\) | \(e\left(\frac{9}{34}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{23}{34}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{11}{17}\right)\) |
\(\chi_{867}(424,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{2}{17}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{13}{34}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{9}{34}\right)\) | \(e\left(\frac{4}{17}\right)\) |
\(\chi_{867}(475,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{12}{17}\right)\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{13}{34}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{2}{17}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{2}{17}\right)\) | \(e\left(\frac{23}{34}\right)\) | \(e\left(\frac{14}{17}\right)\) |
\(\chi_{867}(526,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{6}{17}\right)\) | \(e\left(\frac{12}{17}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{7}{17}\right)\) |
\(\chi_{867}(628,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{17}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{19}{34}\right)\) | \(e\left(\frac{9}{34}\right)\) | \(e\left(\frac{16}{17}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{16}{17}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{10}{17}\right)\) |
\(\chi_{867}(679,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{10}{17}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{15}{17}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{15}{17}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{3}{17}\right)\) |
\(\chi_{867}(730,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{16}{17}\right)\) | \(e\left(\frac{15}{17}\right)\) | \(e\left(\frac{23}{34}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{14}{17}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{13}{34}\right)\) | \(e\left(\frac{14}{17}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{13}{17}\right)\) |
\(\chi_{867}(781,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{17}\right)\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{19}{34}\right)\) | \(e\left(\frac{13}{17}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{23}{34}\right)\) | \(e\left(\frac{13}{17}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{6}{17}\right)\) |
\(\chi_{867}(832,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{8}{17}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{12}{17}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{12}{17}\right)\) | \(e\left(\frac{19}{34}\right)\) | \(e\left(\frac{16}{17}\right)\) |