Properties

Label 87.86
Modulus 8787
Conductor 8787
Order 22
Real yes
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1]))
 
pari: [g,chi] = znchar(Mod(86,87))
 

Kronecker symbol representation

sage: kronecker_character(-87)
 
pari: znchartokronecker(g,chi)
 

(87)\displaystyle\left(\frac{-87}{\bullet}\right)

Basic properties

Modulus: 8787
Conductor: 8787
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 87.d

χ87(86,)\chi_{87}(86,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(87)\Q(\sqrt{-87})

Values on generators

(59,31)(59,31)(1,1)(-1,-1)

First values

aa 1-111224455778810101111131314141616
χ87(86,a) \chi_{ 87 }(86, a) 1-11111111-111111-111111111
sage: chi.jacobi_sum(n)
 
χ87(86,a)   \chi_{ 87 }(86,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ87(86,))   \tau_{ a }( \chi_{ 87 }(86,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ87(86,),χ87(n,))   J(\chi_{ 87 }(86,·),\chi_{ 87 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ87(86,))  K(a,b,\chi_{ 87 }(86,·)) \; at   a,b=\; a,b = e.g. 1,2