Properties

Label 8788.529
Modulus $8788$
Conductor $169$
Order $39$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,34]))
 
pari: [g,chi] = znchar(Mod(529,8788))
 

Basic properties

Modulus: \(8788\)
Conductor: \(169\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(39\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(152,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.q

\(\chi_{8788}(529,\cdot)\) \(\chi_{8788}(653,\cdot)\) \(\chi_{8788}(1205,\cdot)\) \(\chi_{8788}(1329,\cdot)\) \(\chi_{8788}(1881,\cdot)\) \(\chi_{8788}(2005,\cdot)\) \(\chi_{8788}(2557,\cdot)\) \(\chi_{8788}(2681,\cdot)\) \(\chi_{8788}(3909,\cdot)\) \(\chi_{8788}(4033,\cdot)\) \(\chi_{8788}(4585,\cdot)\) \(\chi_{8788}(4709,\cdot)\) \(\chi_{8788}(5261,\cdot)\) \(\chi_{8788}(5385,\cdot)\) \(\chi_{8788}(5937,\cdot)\) \(\chi_{8788}(6061,\cdot)\) \(\chi_{8788}(6613,\cdot)\) \(\chi_{8788}(6737,\cdot)\) \(\chi_{8788}(7289,\cdot)\) \(\chi_{8788}(7413,\cdot)\) \(\chi_{8788}(7965,\cdot)\) \(\chi_{8788}(8089,\cdot)\) \(\chi_{8788}(8641,\cdot)\) \(\chi_{8788}(8765,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 39 polynomial

Values on generators

\((4395,6593)\) → \((1,e\left(\frac{17}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 8788 }(529, a) \) \(1\)\(1\)\(e\left(\frac{2}{39}\right)\)\(e\left(\frac{12}{13}\right)\)\(e\left(\frac{25}{39}\right)\)\(e\left(\frac{4}{39}\right)\)\(e\left(\frac{35}{39}\right)\)\(e\left(\frac{38}{39}\right)\)\(e\left(\frac{25}{39}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8788 }(529,a) \;\) at \(\;a = \) e.g. 2