from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8788, base_ring=CyclotomicField(1014))
M = H._module
chi = DirichletCharacter(H, M([507,602]))
pari: [g,chi] = znchar(Mod(55,8788))
χ8788(3,⋅)
χ8788(35,⋅)
χ8788(55,⋅)
χ8788(87,⋅)
χ8788(107,⋅)
χ8788(139,⋅)
χ8788(159,⋅)
χ8788(211,⋅)
χ8788(243,⋅)
χ8788(263,⋅)
χ8788(295,⋅)
χ8788(347,⋅)
χ8788(367,⋅)
χ8788(399,⋅)
χ8788(419,⋅)
χ8788(451,⋅)
χ8788(471,⋅)
χ8788(503,⋅)
χ8788(523,⋅)
χ8788(555,⋅)
χ8788(575,⋅)
χ8788(607,⋅)
χ8788(627,⋅)
χ8788(659,⋅)
χ8788(679,⋅)
χ8788(711,⋅)
χ8788(731,⋅)
χ8788(763,⋅)
χ8788(783,⋅)
χ8788(815,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4395,6593) → (−1,e(507301))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ8788(55,a) |
−1 | 1 | e(1014509) | e(16971) | e(1014181) | e(5072) | e(1014893) | e(1014935) | e(507266) | e(7867) | e(169115) | e(7871) |