Properties

Label 8788.623
Modulus $8788$
Conductor $8788$
Order $338$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(338))
 
M = H._module
 
chi = DirichletCharacter(H, M([169,293]))
 
pari: [g,chi] = znchar(Mod(623,8788))
 

Basic properties

Modulus: \(8788\)
Conductor: \(8788\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(338\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.z

\(\chi_{8788}(51,\cdot)\) \(\chi_{8788}(103,\cdot)\) \(\chi_{8788}(155,\cdot)\) \(\chi_{8788}(207,\cdot)\) \(\chi_{8788}(259,\cdot)\) \(\chi_{8788}(311,\cdot)\) \(\chi_{8788}(363,\cdot)\) \(\chi_{8788}(415,\cdot)\) \(\chi_{8788}(467,\cdot)\) \(\chi_{8788}(519,\cdot)\) \(\chi_{8788}(571,\cdot)\) \(\chi_{8788}(623,\cdot)\) \(\chi_{8788}(727,\cdot)\) \(\chi_{8788}(779,\cdot)\) \(\chi_{8788}(831,\cdot)\) \(\chi_{8788}(883,\cdot)\) \(\chi_{8788}(935,\cdot)\) \(\chi_{8788}(987,\cdot)\) \(\chi_{8788}(1039,\cdot)\) \(\chi_{8788}(1091,\cdot)\) \(\chi_{8788}(1143,\cdot)\) \(\chi_{8788}(1195,\cdot)\) \(\chi_{8788}(1247,\cdot)\) \(\chi_{8788}(1299,\cdot)\) \(\chi_{8788}(1403,\cdot)\) \(\chi_{8788}(1455,\cdot)\) \(\chi_{8788}(1507,\cdot)\) \(\chi_{8788}(1559,\cdot)\) \(\chi_{8788}(1611,\cdot)\) \(\chi_{8788}(1663,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{169})$
Fixed field: Number field defined by a degree 338 polynomial (not computed)

Values on generators

\((4395,6593)\) → \((-1,e\left(\frac{293}{338}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 8788 }(623, a) \) \(-1\)\(1\)\(e\left(\frac{257}{338}\right)\)\(e\left(\frac{323}{338}\right)\)\(e\left(\frac{95}{169}\right)\)\(e\left(\frac{88}{169}\right)\)\(e\left(\frac{42}{169}\right)\)\(e\left(\frac{121}{169}\right)\)\(e\left(\frac{43}{169}\right)\)\(e\left(\frac{5}{13}\right)\)\(e\left(\frac{109}{338}\right)\)\(e\left(\frac{17}{26}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8788 }(623,a) \;\) at \(\;a = \) e.g. 2