from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8788, base_ring=CyclotomicField(338))
M = H._module
chi = DirichletCharacter(H, M([169,293]))
pari: [g,chi] = znchar(Mod(623,8788))
χ8788(51,⋅)
χ8788(103,⋅)
χ8788(155,⋅)
χ8788(207,⋅)
χ8788(259,⋅)
χ8788(311,⋅)
χ8788(363,⋅)
χ8788(415,⋅)
χ8788(467,⋅)
χ8788(519,⋅)
χ8788(571,⋅)
χ8788(623,⋅)
χ8788(727,⋅)
χ8788(779,⋅)
χ8788(831,⋅)
χ8788(883,⋅)
χ8788(935,⋅)
χ8788(987,⋅)
χ8788(1039,⋅)
χ8788(1091,⋅)
χ8788(1143,⋅)
χ8788(1195,⋅)
χ8788(1247,⋅)
χ8788(1299,⋅)
χ8788(1403,⋅)
χ8788(1455,⋅)
χ8788(1507,⋅)
χ8788(1559,⋅)
χ8788(1611,⋅)
χ8788(1663,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4395,6593) → (−1,e(338293))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ8788(623,a) |
−1 | 1 | e(338257) | e(338323) | e(16995) | e(16988) | e(16942) | e(169121) | e(16943) | e(135) | e(338109) | e(2617) |