Properties

Label 8788.657
Modulus 87888788
Conductor 1313
Order 1212
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11]))
 
pari: [g,chi] = znchar(Mod(657,8788))
 

Basic properties

Modulus: 87888788
Conductor: 1313
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ13(7,)\chi_{13}(7,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.k

χ8788(657,)\chi_{8788}(657,\cdot) χ8788(3737,)\chi_{8788}(3737,\cdot) χ8788(6173,)\chi_{8788}(6173,\cdot) χ8788(7009,)\chi_{8788}(7009,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Q(ζ13)\Q(\zeta_{13})

Values on generators

(4395,6593)(4395,6593)(1,e(1112))(1,e\left(\frac{11}{12}\right))

First values

aa 1-11133557799111115151717191921212323
χ8788(657,a) \chi_{ 8788 }(657, a) 1-111e(23)e\left(\frac{2}{3}\right)iie(112)e\left(\frac{1}{12}\right)e(13)e\left(\frac{1}{3}\right)e(512)e\left(\frac{5}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)e(712)e\left(\frac{7}{12}\right)i-ie(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ8788(657,a)   \chi_{ 8788 }(657,a) \; at   a=\;a = e.g. 2