from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8788, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,11]))
pari: [g,chi] = znchar(Mod(657,8788))
Basic properties
Modulus: | \(8788\) | |
Conductor: | \(13\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{13}(7,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 8788.k
\(\chi_{8788}(657,\cdot)\) \(\chi_{8788}(3737,\cdot)\) \(\chi_{8788}(6173,\cdot)\) \(\chi_{8788}(7009,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | \(\Q(\zeta_{13})\) |
Values on generators
\((4395,6593)\) → \((1,e\left(\frac{11}{12}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 8788 }(657, a) \) | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
sage: chi.jacobi_sum(n)