Properties

Label 8788.7197
Modulus $8788$
Conductor $169$
Order $52$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,29]))
 
pari: [g,chi] = znchar(Mod(7197,8788))
 

Basic properties

Modulus: \(8788\)
Conductor: \(169\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(164,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.r

\(\chi_{8788}(437,\cdot)\) \(\chi_{8788}(577,\cdot)\) \(\chi_{8788}(1113,\cdot)\) \(\chi_{8788}(1253,\cdot)\) \(\chi_{8788}(1789,\cdot)\) \(\chi_{8788}(1929,\cdot)\) \(\chi_{8788}(2465,\cdot)\) \(\chi_{8788}(2605,\cdot)\) \(\chi_{8788}(3141,\cdot)\) \(\chi_{8788}(3281,\cdot)\) \(\chi_{8788}(3817,\cdot)\) \(\chi_{8788}(3957,\cdot)\) \(\chi_{8788}(4493,\cdot)\) \(\chi_{8788}(5169,\cdot)\) \(\chi_{8788}(5309,\cdot)\) \(\chi_{8788}(5845,\cdot)\) \(\chi_{8788}(5985,\cdot)\) \(\chi_{8788}(6521,\cdot)\) \(\chi_{8788}(6661,\cdot)\) \(\chi_{8788}(7197,\cdot)\) \(\chi_{8788}(7337,\cdot)\) \(\chi_{8788}(7873,\cdot)\) \(\chi_{8788}(8013,\cdot)\) \(\chi_{8788}(8689,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((4395,6593)\) → \((1,e\left(\frac{29}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 8788 }(7197, a) \) \(-1\)\(1\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{1}{52}\right)\)\(e\left(\frac{35}{52}\right)\)\(e\left(\frac{4}{13}\right)\)\(e\left(\frac{23}{52}\right)\)\(e\left(\frac{9}{52}\right)\)\(e\left(\frac{11}{26}\right)\)\(i\)\(e\left(\frac{43}{52}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8788 }(7197,a) \;\) at \(\;a = \) e.g. 2