Properties

Label 8788.8735
Modulus 87888788
Conductor 87888788
Order 338338
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(338))
 
M = H._module
 
chi = DirichletCharacter(H, M([169,215]))
 
pari: [g,chi] = znchar(Mod(8735,8788))
 

Basic properties

Modulus: 87888788
Conductor: 87888788
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 338338
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.z

χ8788(51,)\chi_{8788}(51,\cdot) χ8788(103,)\chi_{8788}(103,\cdot) χ8788(155,)\chi_{8788}(155,\cdot) χ8788(207,)\chi_{8788}(207,\cdot) χ8788(259,)\chi_{8788}(259,\cdot) χ8788(311,)\chi_{8788}(311,\cdot) χ8788(363,)\chi_{8788}(363,\cdot) χ8788(415,)\chi_{8788}(415,\cdot) χ8788(467,)\chi_{8788}(467,\cdot) χ8788(519,)\chi_{8788}(519,\cdot) χ8788(571,)\chi_{8788}(571,\cdot) χ8788(623,)\chi_{8788}(623,\cdot) χ8788(727,)\chi_{8788}(727,\cdot) χ8788(779,)\chi_{8788}(779,\cdot) χ8788(831,)\chi_{8788}(831,\cdot) χ8788(883,)\chi_{8788}(883,\cdot) χ8788(935,)\chi_{8788}(935,\cdot) χ8788(987,)\chi_{8788}(987,\cdot) χ8788(1039,)\chi_{8788}(1039,\cdot) χ8788(1091,)\chi_{8788}(1091,\cdot) χ8788(1143,)\chi_{8788}(1143,\cdot) χ8788(1195,)\chi_{8788}(1195,\cdot) χ8788(1247,)\chi_{8788}(1247,\cdot) χ8788(1299,)\chi_{8788}(1299,\cdot) χ8788(1403,)\chi_{8788}(1403,\cdot) χ8788(1455,)\chi_{8788}(1455,\cdot) χ8788(1507,)\chi_{8788}(1507,\cdot) χ8788(1559,)\chi_{8788}(1559,\cdot) χ8788(1611,)\chi_{8788}(1611,\cdot) χ8788(1663,)\chi_{8788}(1663,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ169)\Q(\zeta_{169})
Fixed field: Number field defined by a degree 338 polynomial (not computed)

Values on generators

(4395,6593)(4395,6593)(1,e(215338))(-1,e\left(\frac{215}{338}\right))

First values

aa 1-11133557799111115151717191921212323
χ8788(8735,a) \chi_{ 8788 }(8735, a) 1-111e(49338)e\left(\frac{49}{338}\right)e(297338)e\left(\frac{297}{338}\right)e(147169)e\left(\frac{147}{169}\right)e(49169)e\left(\frac{49}{169}\right)e(81169)e\left(\frac{81}{169}\right)e(4169)e\left(\frac{4}{169}\right)e(95169)e\left(\frac{95}{169}\right)e(513)e\left(\frac{5}{13}\right)e(5338)e\left(\frac{5}{338}\right)e(1726)e\left(\frac{17}{26}\right)
sage: chi.jacobi_sum(n)
 
χ8788(8735,a)   \chi_{ 8788 }(8735,a) \; at   a=\;a = e.g. 2