Properties

Label 88.g
Modulus 8888
Conductor 8888
Order 22
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(43,88))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Kronecker symbol representation

sage: kronecker_character(88)
 
pari: znchartokronecker(g,chi)
 

(88)\displaystyle\left(\frac{88}{\bullet}\right)

Basic properties

Modulus: 8888
Conductor: 8888
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q\Q
Fixed field: Q(22)\Q(\sqrt{22})

Characters in Galois orbit

Character 1-1 11 33 55 77 99 1313 1515 1717 1919 2121 2323
χ88(43,)\chi_{88}(43,\cdot) 11 11 11 1-1 11 11 11 1-1 1-1 1-1 11 1-1