Properties

Label 8800.391
Modulus $8800$
Conductor $4400$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,5,4,18]))
 
pari: [g,chi] = znchar(Mod(391,8800))
 

Basic properties

Modulus: \(8800\)
Conductor: \(4400\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4400}(3691,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.kb

\(\chi_{8800}(391,\cdot)\) \(\chi_{8800}(1031,\cdot)\) \(\chi_{8800}(2471,\cdot)\) \(\chi_{8800}(3511,\cdot)\) \(\chi_{8800}(4791,\cdot)\) \(\chi_{8800}(5431,\cdot)\) \(\chi_{8800}(6871,\cdot)\) \(\chi_{8800}(7911,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((2751,3301,4577,5601)\) → \((-1,i,e\left(\frac{1}{5}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8800 }(391, a) \) \(1\)\(1\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{9}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8800 }(391,a) \;\) at \(\;a = \) e.g. 2