Properties

Label 8800.4113
Modulus 88008800
Conductor 22002200
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10,19,10]))
 
pari: [g,chi] = znchar(Mod(4113,8800))
 

Basic properties

Modulus: 88008800
Conductor: 22002200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2200(813,)\chi_{2200}(813,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.iw

χ8800(1297,)\chi_{8800}(1297,\cdot) χ8800(2353,)\chi_{8800}(2353,\cdot) χ8800(4113,)\chi_{8800}(4113,\cdot) χ8800(4817,)\chi_{8800}(4817,\cdot) χ8800(5873,)\chi_{8800}(5873,\cdot) χ8800(6577,)\chi_{8800}(6577,\cdot) χ8800(7633,)\chi_{8800}(7633,\cdot) χ8800(8337,)\chi_{8800}(8337,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.20.81054451878125000000000000000000000000000000.1

Values on generators

(2751,3301,4577,5601)(2751,3301,4577,5601)(1,1,e(1920),1)(1,-1,e\left(\frac{19}{20}\right),-1)

First values

aa 1-1113377991313171719192121232327272929
χ8800(4113,a) \chi_{ 8800 }(4113, a) 1111e(320)e\left(\frac{3}{20}\right)iie(310)e\left(\frac{3}{10}\right)e(120)e\left(\frac{1}{20}\right)e(1720)e\left(\frac{17}{20}\right)e(110)e\left(\frac{1}{10}\right)e(25)e\left(\frac{2}{5}\right)e(920)e\left(\frac{9}{20}\right)e(920)e\left(\frac{9}{20}\right)e(910)e\left(\frac{9}{10}\right)
sage: chi.jacobi_sum(n)
 
χ8800(4113,a)   \chi_{ 8800 }(4113,a) \; at   a=\;a = e.g. 2